## Where the vocab(s) will be written save_data: cnndm/run/example # Prevent overwriting existing files in the folder overwrite: False # filter long examples src_seq_length: 10000 tgt_seq_length: 10000 src_seq_length_trunc: 400 tgt_seq_length_trunc: 100 # common vocabulary for source and target share_vocab: True # Corpus opts: data: cnndm: path_src: cnndm/train.txt.src path_tgt: cnndm/train.txt.tgt.tagged transforms: [] weight: 1 valid: path_src: cnndm/val.txt.src path_tgt: cnndm/val.txt.tgt.tagged transforms: [] src_vocab_size: 50000 tgt_vocab_size: 50000 src_vocab: cnndm/run/example.vocab.src tgt_vocab: cnndm/run/example.vocab.tgt save_model: cnndm/run/model copy_attn: true global_attention: mlp word_vec_size: 128 rnn_size: 512 layers: 1 encoder_type: brnn train_steps: 200000 max_grad_norm: 2 dropout: 0 batch_size: 16 valid_batch_size: 16 optim: adagrad learning_rate: 0.15 adagrad_accumulator_init: 0.1 reuse_copy_attn: true copy_loss_by_seqlength: true bridge: true seed: 777 world_size: 2 gpu_ranks: [0, 1]