#!/usr/bin/env python # -*- coding: utf-8 -*- # Author: Rico Sennrich # flake8: noqa """Use byte pair encoding (BPE) to learn a variable-length encoding of the vocabulary in a text. Unlike the original BPE, it does not compress the plain text, but can be used to reduce the vocabulary of a text to a configurable number of symbols, with only a small increase in the number of tokens. Reference: Rico Sennrich, Barry Haddow and Alexandra Birch (2016). Neural Machine Translation of Rare Words with Subword Units. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016). Berlin, Germany. """ # This file is retrieved from https://github.com/rsennrich/subword-nmt from __future__ import unicode_literals import sys import codecs import re import copy import argparse from collections import defaultdict, Counter # hack for python2/3 compatibility from io import open argparse.open = open def create_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description="learn BPE-based word segmentation") parser.add_argument( '--input', '-i', type=argparse.FileType('r'), default=sys.stdin, metavar='PATH', help="Input text (default: standard input).") parser.add_argument( '--output', '-o', type=argparse.FileType('w'), default=sys.stdout, metavar='PATH', help="Output file for BPE codes (default: standard output)") parser.add_argument( '--symbols', '-s', type=int, default=10000, help="Create this many new symbols (each representing a character n-gram) (default: %(default)s))") parser.add_argument( '--min-frequency', type=int, default=2, metavar='FREQ', help='Stop if no symbol pair has frequency >= FREQ (default: %(default)s))') parser.add_argument('--dict-input', action="store_true", help="If set, input file is interpreted as a dictionary where each line contains a word-count pair") parser.add_argument( '--verbose', '-v', action="store_true", help="verbose mode.") return parser def get_vocabulary(fobj, is_dict=False): """Read text and return dictionary that encodes vocabulary """ vocab = Counter() for line in fobj: if is_dict: word, count = line.strip().split() vocab[word] = int(count) else: for word in line.split(): vocab[word] += 1 return vocab def update_pair_statistics(pair, changed, stats, indices): """Minimally update the indices and frequency of symbol pairs if we merge a pair of symbols, only pairs that overlap with occurrences of this pair are affected, and need to be updated. """ stats[pair] = 0 indices[pair] = defaultdict(int) first, second = pair new_pair = first + second for j, word, old_word, freq in changed: # find all instances of pair, and update frequency/indices around it i = 0 while True: # find first symbol try: i = old_word.index(first, i) except ValueError: break # if first symbol is followed by second symbol, we've found an occurrence of pair (old_word[i:i+2]) if i < len(old_word) - 1 and old_word[i + 1] == second: # assuming a symbol sequence "A B C", if "B C" is merged, reduce the frequency of "A B" if i: prev = old_word[i - 1:i + 1] stats[prev] -= freq indices[prev][j] -= 1 if i < len(old_word) - 2: # assuming a symbol sequence "A B C B", if "B C" is merged, reduce the frequency of "C B". # however, skip this if the sequence is A B C B C, because the frequency of "C B" will be reduced by the previous code block if old_word[i + 2] != first or i >= len(old_word) - 3 or old_word[i + 3] != second: nex = old_word[i + 1:i + 3] stats[nex] -= freq indices[nex][j] -= 1 i += 2 else: i += 1 i = 0 while True: try: # find new pair i = word.index(new_pair, i) except ValueError: break # assuming a symbol sequence "A BC D", if "B C" is merged, increase the frequency of "A BC" if i: prev = word[i - 1:i + 1] stats[prev] += freq indices[prev][j] += 1 # assuming a symbol sequence "A BC B", if "B C" is merged, increase the frequency of "BC B" # however, if the sequence is A BC BC, skip this step because the count of "BC BC" will be incremented by the previous code block if i < len(word) - 1 and word[i + 1] != new_pair: nex = word[i:i + 2] stats[nex] += freq indices[nex][j] += 1 i += 1 def get_pair_statistics(vocab): """Count frequency of all symbol pairs, and create index""" # data structure of pair frequencies stats = defaultdict(int) # index from pairs to words indices = defaultdict(lambda: defaultdict(int)) for i, (word, freq) in enumerate(vocab): prev_char = word[0] for char in word[1:]: stats[prev_char, char] += freq indices[prev_char, char][i] += 1 prev_char = char return stats, indices def replace_pair(pair, vocab, indices): """Replace all occurrences of a symbol pair ('A', 'B') with a new symbol 'AB'""" first, second = pair pair_str = ''.join(pair) pair_str = pair_str.replace('\\', '\\\\') changes = [] pattern = re.compile( r'(?'); # version numbering allows bckward compatibility outfile.write('#version: 0.2\n') vocab = get_vocabulary(infile, is_dict) vocab = dict([(tuple(x[:-1]) + (x[-1] + '',), y) for (x, y) in vocab.items()]) sorted_vocab = sorted(vocab.items(), key=lambda x: x[1], reverse=True) stats, indices = get_pair_statistics(sorted_vocab) big_stats = copy.deepcopy(stats) # threshold is inspired by Zipfian assumption, but should only affect speed threshold = max(stats.values()) / 10 for i in range(num_symbols): if stats: most_frequent = max(stats, key=lambda x: (stats[x], x)) # we probably missed the best pair because of pruning; go back to full statistics if not stats or (i and stats[most_frequent] < threshold): prune_stats(stats, big_stats, threshold) stats = copy.deepcopy(big_stats) most_frequent = max(stats, key=lambda x: (stats[x], x)) # threshold is inspired by Zipfian assumption, but should only affect speed threshold = stats[most_frequent] * i / (i + 10000.0) prune_stats(stats, big_stats, threshold) if stats[most_frequent] < min_frequency: sys.stderr.write( 'no pair has frequency >= {0}. Stopping\n'.format(min_frequency)) break if verbose: sys.stderr.write('pair {0}: {1} {2} -> {1}{2} (frequency {3})\n'.format( i, most_frequent[0], most_frequent[1], stats[most_frequent])) outfile.write('{0} {1}\n'.format(*most_frequent)) changes = replace_pair(most_frequent, sorted_vocab, indices) update_pair_statistics(most_frequent, changes, stats, indices) stats[most_frequent] = 0 if not i % 100: prune_stats(stats, big_stats, threshold) if __name__ == '__main__': # python 2/3 compatibility if sys.version_info < (3, 0): sys.stderr = codecs.getwriter('UTF-8')(sys.stderr) sys.stdout = codecs.getwriter('UTF-8')(sys.stdout) sys.stdin = codecs.getreader('UTF-8')(sys.stdin) else: sys.stderr = codecs.getwriter('UTF-8')(sys.stderr.buffer) sys.stdout = codecs.getwriter('UTF-8')(sys.stdout.buffer) sys.stdin = codecs.getreader('UTF-8')(sys.stdin.buffer) parser = create_parser() args = parser.parse_args() # read/write files as UTF-8 if args.input.name != '': args.input = codecs.open(args.input.name, encoding='utf-8') if args.output.name != '': args.output = codecs.open(args.output.name, 'w', encoding='utf-8') main(args.input, args.output, args.symbols, args.min_frequency, args.verbose, is_dict=args.dict_input)