# For full desciption to setup and use this file, refer to # https://opennmt.net/OpenNMT-py/examples/GGNN.html # save_data is where the necessary objects will be written save_data: ../OpenNMT-py-ggnn-example/run/example # Filter long examples src_seq_length: 1000 tgt_seq_length: 30 # Data definition data: cnndm: path_src: ../OpenNMT-py-ggnn-example/src-train.txt path_tgt: ../OpenNMT-py-ggnn-example/tgt-train.txt transforms: [filtertoolong] weight: 1 valid: path_src: ../OpenNMT-py-ggnn-example/src-val.txt path_tgt: ../OpenNMT-py-ggnn-example/tgt-val.txt src_vocab: ../OpenNMT-py-ggnn-example/srcvocab.txt tgt_vocab: ../OpenNMT-py-ggnn-example/tgtvocab.txt save_model: ../OpenNMT-py-ggnn-example/run/model # Model options train_steps: 10000 save_checkpoint_steps: 5000 encoder_type: ggnn layers: 2 decoder_type: rnn learning_rate: 0.1 start_decay_steps: 5000 learning_rate_decay: 0.8 global_attention: general batch_size: 32 # src_ggnn_size is larger than vocab plus features to allow one-hot settings src_ggnn_size: 100 # src_word_vec_size less than rnn_size allows rnn learning during GGNN steps src_word_vec_size: 16 # Increase tgt_word_vec_size, rnn_size, and state_dim together # to provide larger GGNN embeddings and larger decoder RNN tgt_word_vec_size: 64 rnn_size: 64 state_dim: 64 bridge: true gpu_ranks: 0 n_edge_types: 9 # Increasing n_steps slows model computation but allows information # to be aggregated over more node hops n_steps: 5 n_node: 70