import unittest from onmt.translate.greedy_search import GreedySearch import torch class GlobalScorerStub(object): alpha = 0 beta = 0 def __init__(self): self.length_penalty = lambda x, alpha: 1. self.cov_penalty = lambda cov, beta: torch.zeros( (1, cov.shape[-2]), device=cov.device, dtype=torch.float) self.has_cov_pen = False self.has_len_pen = False def update_global_state(self, beam): pass def score(self, beam, scores): return scores class TestGreedySearch(unittest.TestCase): BATCH_SZ = 3 INP_SEQ_LEN = 53 DEAD_SCORE = -1e20 BLOCKED_SCORE = -10e20 def test_doesnt_predict_eos_if_shorter_than_min_len(self): # batch 0 will always predict EOS. The other batches will predict # non-eos scores. for batch_sz in [1, 3]: n_words = 100 _non_eos_idxs = [47] valid_score_dist = torch.log_softmax(torch.tensor( [6., 5.]), dim=0) min_length = 5 eos_idx = 2 lengths = torch.randint(0, 30, (batch_sz,)) samp = GreedySearch( 0, 1, 2, 3, batch_sz, GlobalScorerStub(), min_length, False, set(), False, 30, 1., 1, 0, 1, False) samp.initialize(torch.zeros((1, 1)), lengths) all_attns = [] for i in range(min_length + 4): word_probs = torch.full( (batch_sz, n_words), -float('inf')) # "best" prediction is eos - that should be blocked word_probs[0, eos_idx] = valid_score_dist[0] # include at least one prediction OTHER than EOS # that is greater than -1e20 word_probs[0, _non_eos_idxs[0]] = valid_score_dist[1] word_probs[1:, _non_eos_idxs[0] + i] = 0 attns = torch.randn(1, batch_sz, 53) all_attns.append(attns) samp.advance(word_probs, attns) if i < min_length: self.assertTrue( samp.topk_scores[0].allclose(valid_score_dist[1])) self.assertTrue( samp.topk_scores[1:].eq(0).all()) elif i == min_length: # now batch 0 has ended and no others have self.assertTrue(samp.is_finished[0, :].eq(1).all()) self.assertTrue(samp.is_finished[1:, 1:].eq(0).all()) else: # i > min_length break def test_returns_correct_scores_deterministic(self): for batch_sz in [1, 13]: for temp in [1., 3.]: n_words = 100 _non_eos_idxs = [47, 51, 13, 88, 99] valid_score_dist_1 = torch.log_softmax(torch.tensor( [6., 5., 4., 3., 2., 1.]), dim=0) valid_score_dist_2 = torch.log_softmax(torch.tensor( [6., 1.]), dim=0) eos_idx = 2 lengths = torch.randint(0, 30, (batch_sz,)) samp = GreedySearch( 0, 1, 2, 3, batch_sz, GlobalScorerStub(), 0, False, set(), False, 30, temp, 1, 0, 1, False) samp.initialize(torch.zeros((1, 1)), lengths) # initial step i = 0 word_probs = torch.full( (batch_sz, n_words), -float('inf')) # batch 0 dies on step 0 word_probs[0, eos_idx] = valid_score_dist_1[0] # include at least one prediction OTHER than EOS # that is greater than -1e20 word_probs[0, _non_eos_idxs] = valid_score_dist_1[1:] word_probs[1:, _non_eos_idxs[0] + i] = 0 attns = torch.randn(1, batch_sz, 53) samp.advance(word_probs, attns) self.assertTrue(samp.is_finished[0].eq(1).all()) samp.update_finished() self.assertEqual( [score for score, _, _ in samp.hypotheses[0]], [valid_score_dist_1[0] / temp]) if batch_sz == 1: self.assertTrue(samp.done) continue else: self.assertFalse(samp.done) # step 2 i = 1 word_probs = torch.full( (batch_sz - 1, n_words), -float('inf')) # (old) batch 8 dies on step 1 word_probs[7, eos_idx] = valid_score_dist_2[0] word_probs[0:7, _non_eos_idxs[:2]] = valid_score_dist_2 word_probs[8:, _non_eos_idxs[:2]] = valid_score_dist_2 attns = torch.randn(1, batch_sz, 53) samp.advance(word_probs, attns) self.assertTrue(samp.is_finished[7].eq(1).all()) samp.update_finished() self.assertEqual( [score for score, _, _ in samp.hypotheses[8]], [valid_score_dist_2[0] / temp]) # step 3 i = 2 word_probs = torch.full( (batch_sz - 2, n_words), -float('inf')) # everything dies word_probs[:, eos_idx] = 0 attns = torch.randn(1, batch_sz, 53) samp.advance(word_probs, attns) self.assertTrue(samp.is_finished.eq(1).all()) samp.update_finished() self.assertTrue(samp.done) def test_returns_correct_scores_non_deterministic(self): for batch_sz in [1, 13]: for temp in [1., 3.]: n_words = 100 _non_eos_idxs = [47, 51, 13, 88, 99] valid_score_dist_1 = torch.log_softmax(torch.tensor( [6., 5., 4., 3., 2., 1.]), dim=0) valid_score_dist_2 = torch.log_softmax(torch.tensor( [6., 1.]), dim=0) eos_idx = 2 lengths = torch.randint(0, 30, (batch_sz,)) samp = GreedySearch( 0, 1, 2, 3, batch_sz, GlobalScorerStub(), 0, False, set(), False, 30, temp, 2, 0, 1, False) samp.initialize(torch.zeros((1, 1)), lengths) # initial step i = 0 for _ in range(100): word_probs = torch.full( (batch_sz, n_words), -float('inf')) # batch 0 dies on step 0 word_probs[0, eos_idx] = valid_score_dist_1[0] # include at least one prediction OTHER than EOS # that is greater than -1e20 word_probs[0, _non_eos_idxs] = valid_score_dist_1[1:] word_probs[1:, _non_eos_idxs[0] + i] = 0 attns = torch.randn(1, batch_sz, 53) samp.advance(word_probs, attns) if samp.is_finished[0].eq(1).all(): break else: self.fail("Batch 0 never ended (very unlikely but maybe " "due to stochasticisty. If so, please increase " "the range of the for-loop.") samp.update_finished() self.assertEqual( [samp.topk_scores[0]], [valid_score_dist_1[0] / temp]) if batch_sz == 1: self.assertTrue(samp.done) continue else: self.assertFalse(samp.done) # step 2 i = 1 for _ in range(100): word_probs = torch.full( (batch_sz - 1, n_words), -float('inf')) # (old) batch 8 dies on step 1 word_probs[7, eos_idx] = valid_score_dist_2[0] word_probs[0:7, _non_eos_idxs[:2]] = valid_score_dist_2 word_probs[8:, _non_eos_idxs[:2]] = valid_score_dist_2 attns = torch.randn(1, batch_sz, 53) samp.advance(word_probs, attns) if samp.is_finished[7].eq(1).all(): break else: self.fail("Batch 8 never ended (very unlikely but maybe " "due to stochasticisty. If so, please increase " "the range of the for-loop.") samp.update_finished() self.assertEqual( [score for score, _, _ in samp.hypotheses[8]], [valid_score_dist_2[0] / temp]) # step 3 i = 2 for _ in range(250): word_probs = torch.full( (samp.alive_seq.shape[0], n_words), -float('inf')) # everything dies word_probs[:, eos_idx] = 0 attns = torch.randn(1, batch_sz, 53) samp.advance(word_probs, attns) if samp.is_finished.any(): samp.update_finished() if samp.is_finished.eq(1).all(): break else: self.fail("All batches never ended (very unlikely but " "maybe due to stochasticisty. If so, please " "increase the range of the for-loop.") self.assertTrue(samp.done) def test_returns_correct_scores_non_deterministic_beams(self): beam_size = 10 for batch_sz in [1, 13]: for temp in [1., 3.]: n_words = 100 _non_eos_idxs = [47, 51, 13, 88, 99] valid_score_dist_1 = torch.log_softmax(torch.tensor( [6., 5., 4., 3., 2., 1.]), dim=0) valid_score_dist_2 = torch.log_softmax(torch.tensor( [6., 1.]), dim=0) eos_idx = 2 lengths = torch.randint(0, 30, (batch_sz,)) samp = GreedySearch( 0, 1, 2, 3, batch_sz, GlobalScorerStub(), 0, False, set(), False, 30, temp, 50, 0, beam_size, False) samp.initialize(torch.zeros((1, 1)), lengths) # initial step # finish one beam i = 0 for _ in range(100): word_probs = torch.full( (batch_sz*beam_size, n_words), -float('inf')) word_probs[beam_size-2, eos_idx] = valid_score_dist_1[0] # include at least one prediction OTHER than EOS # that is greater than -1e20 word_probs[beam_size-2, _non_eos_idxs] = valid_score_dist_1[1:] word_probs[beam_size-2+1:, _non_eos_idxs[0] + i] = 0 word_probs[:beam_size-2, _non_eos_idxs[0] + i] = 0 attns = torch.randn(1, batch_sz, 53) samp.advance(word_probs, attns) if samp.is_finished[beam_size-2].eq(1).all(): self.assertFalse( samp.is_finished[:beam_size-2].eq(1).any()) self.assertFalse( samp.is_finished[beam_size-2+1].eq(1).any()) break else: self.fail("Batch 0 never ended (very unlikely but maybe " "due to stochasticisty. If so, please increase " "the range of the for-loop.") samp.update_finished() self.assertEqual( [samp.topk_scores[beam_size-2]], [valid_score_dist_1[0] / temp]) # step 2 # finish example in last batch i = 1 for _ in range(100): word_probs = torch.full( (batch_sz*beam_size-1, n_words), -float('inf')) # (old) batch 8 dies on step 1 word_probs[(batch_sz-1)*beam_size + 7, eos_idx] = valid_score_dist_2[0] word_probs[:(batch_sz-1)*beam_size + 7, _non_eos_idxs[:2]] = valid_score_dist_2 word_probs[(batch_sz-1)*beam_size + 8:, _non_eos_idxs[:2]] = valid_score_dist_2 attns = torch.randn(1, batch_sz, 53) samp.advance(word_probs, attns) if ( samp.is_finished[(batch_sz - 1) * beam_size + 7] .eq(1) .all() ): break else: self.fail("Batch 8 never ended (very unlikely but maybe " "due to stochasticisty. If so, please increase " "the range of the for-loop.") samp.update_finished() self.assertEqual( [score for score, _, _ in samp.hypotheses[ batch_sz-1][-1:]], [valid_score_dist_2[0] / temp]) # step 3 i = 2 for _ in range(250): word_probs = torch.full( (samp.alive_seq.shape[0], n_words), -float('inf')) # everything dies word_probs[:, eos_idx] = 0 attns = torch.randn(1, batch_sz, 53) samp.advance(word_probs, attns) if samp.is_finished.any(): samp.update_finished() if samp.is_finished.eq(1).all(): break else: self.fail("All batches never ended (very unlikely but " "maybe due to stochasticisty. If so, please " "increase the range of the for-loop.") self.assertTrue(samp.done) def test_returns_correct_scores_non_deterministic_topp(self): for batch_sz in [1, 13]: for temp in [1., 0.3]: n_words = 100 _non_eos_idxs = [47, 51, 13, 88, 99] valid_score_dist_1 = torch.log_softmax(torch.tensor( [6., 5., 4., 3., 2., 1.]), dim=0) valid_score_dist_2 = torch.log_softmax(torch.tensor( [6., 1.]), dim=0) eos_idx = 2 lengths = torch.randint(0, 30, (batch_sz,)) samp = GreedySearch( 0, 1, 2, 3, batch_sz, GlobalScorerStub(), 0, False, set(), False, -1, temp, 50, 0.5, 1, False) samp.initialize(torch.zeros((1, 1)), lengths) # initial step i = 0 for _ in range(100): word_probs = torch.full( (batch_sz, n_words), -float('inf')) # batch 0 dies on step 0 word_probs[0, eos_idx] = valid_score_dist_1[0] # include at least one prediction OTHER than EOS # that is greater than -1e20 word_probs[0, _non_eos_idxs] = valid_score_dist_1[1:] word_probs[1:, _non_eos_idxs[0] + i] = 0 attns = torch.randn(1, batch_sz, 53) samp.advance(word_probs, attns) if samp.is_finished[0].eq(1).all(): break else: self.fail("Batch 0 never ended (very unlikely but maybe " "due to stochasticisty. If so, please increase " "the range of the for-loop.") samp.update_finished() self.assertEqual( [score for score, _, _ in samp.hypotheses[0]], [valid_score_dist_1[0] / temp]) if batch_sz == 1: self.assertTrue(samp.done) continue else: self.assertFalse(samp.done) # step 2 i = 1 for _ in range(200): word_probs = torch.full( (batch_sz - 1, n_words), -float('inf')) # (old) batch 8 dies on step 1 word_probs[7, eos_idx] = valid_score_dist_2[0] word_probs[0:7, _non_eos_idxs[:2]] = valid_score_dist_2 word_probs[8:, _non_eos_idxs[:2]] = valid_score_dist_2 attns = torch.randn(1, batch_sz, 53) samp.advance(word_probs, attns) if samp.is_finished[7].eq(1).all(): break else: self.fail("Batch 8 never ended (very unlikely but maybe " "due to stochasticisty. If so, please increase " "the range of the for-loop.") samp.update_finished() self.assertEqual( [score for score, _, _ in samp.hypotheses[8]], [valid_score_dist_2[0] / temp]) # step 3 i = 2 for _ in range(250): word_probs = torch.full( (samp.alive_seq.shape[0], n_words), -float('inf')) # everything dies word_probs[:, eos_idx] = 0 attns = torch.randn(1, batch_sz, 53) samp.advance(word_probs, attns) if samp.is_finished.any(): samp.update_finished() if samp.is_finished.eq(1).all(): break else: self.fail("All batches never ended (very unlikely but " "maybe due to stochasticisty. If so, please " "increase the range of the for-loop.") self.assertTrue(samp.done)