from enum import Enum from onmt.utils.logging import logger class PatienceEnum(Enum): IMPROVING = 0 DECREASING = 1 STOPPED = 2 class Scorer(object): def __init__(self, best_score, name): self.best_score = best_score self.name = name def is_improving(self, stats): raise NotImplementedError() def is_decreasing(self, stats): raise NotImplementedError() def update(self, stats): self.best_score = self._caller(stats) def __call__(self, stats, **kwargs): return self._caller(stats) def _caller(self, stats): raise NotImplementedError() class PPLScorer(Scorer): def __init__(self): super(PPLScorer, self).__init__(float("inf"), "ppl") def is_improving(self, stats): return stats.ppl() < self.best_score def is_decreasing(self, stats): return stats.ppl() > self.best_score def _caller(self, stats): return stats.ppl() class AccuracyScorer(Scorer): def __init__(self): super(AccuracyScorer, self).__init__(float("-inf"), "acc") def is_improving(self, stats): return stats.accuracy() > self.best_score def is_decreasing(self, stats): return stats.accuracy() < self.best_score def _caller(self, stats): return stats.accuracy() DEFAULT_SCORERS = [PPLScorer(), AccuracyScorer()] SCORER_BUILDER = { "ppl": PPLScorer, "accuracy": AccuracyScorer } def scorers_from_opts(opt): if opt.early_stopping_criteria is None: return DEFAULT_SCORERS else: scorers = [] for criterion in set(opt.early_stopping_criteria): assert criterion in SCORER_BUILDER.keys(), \ "Criterion {} not found".format(criterion) scorers.append(SCORER_BUILDER[criterion]()) return scorers class EarlyStopping(object): def __init__(self, tolerance, scorers=DEFAULT_SCORERS): """ Callable class to keep track of early stopping. Args: tolerance(int): number of validation steps without improving scorer(fn): list of scorers to validate performance on dev """ self.tolerance = tolerance self.stalled_tolerance = self.tolerance self.current_tolerance = self.tolerance self.early_stopping_scorers = scorers self.status = PatienceEnum.IMPROVING self.current_step_best = 0 def __call__(self, valid_stats, step): """ Update the internal state of early stopping mechanism, whether to continue training or stop the train procedure. Checks whether the scores from all pre-chosen scorers improved. If every metric improve, then the status is switched to improving and the tolerance is reset. If every metric deteriorate, then the status is switched to decreasing and the tolerance is also decreased; if the tolerance reaches 0, then the status is changed to stopped. Finally, if some improved and others not, then it's considered stalled; after tolerance number of stalled, the status is switched to stopped. :param valid_stats: Statistics of dev set """ if self.status == PatienceEnum.STOPPED: # Don't do anything return if all([scorer.is_improving(valid_stats) for scorer in self.early_stopping_scorers]): self._update_increasing(valid_stats, step) elif all([scorer.is_decreasing(valid_stats) for scorer in self.early_stopping_scorers]): self._update_decreasing() else: self._update_stalled() def _update_stalled(self): self.stalled_tolerance -= 1 logger.info( "Stalled patience: {}/{}".format(self.stalled_tolerance, self.tolerance)) if self.stalled_tolerance == 0: logger.info( "Training finished after stalled validations. Early Stop!" ) self._log_best_step() self._decreasing_or_stopped_status_update(self.stalled_tolerance) def _update_increasing(self, valid_stats, step): self.current_step_best = step for scorer in self.early_stopping_scorers: logger.info( "Model is improving {}: {:g} --> {:g}.".format( scorer.name, scorer.best_score, scorer(valid_stats)) ) # Update best score of each criteria scorer.update(valid_stats) # Reset tolerance self.current_tolerance = self.tolerance self.stalled_tolerance = self.tolerance # Update current status self.status = PatienceEnum.IMPROVING def _update_decreasing(self): # Decrease tolerance self.current_tolerance -= 1 # Log logger.info( "Decreasing patience: {}/{}".format(self.current_tolerance, self.tolerance) ) # Log if self.current_tolerance == 0: logger.info("Training finished after not improving. Early Stop!") self._log_best_step() self._decreasing_or_stopped_status_update(self.current_tolerance) def _log_best_step(self): logger.info("Best model found at step {}".format( self.current_step_best)) def _decreasing_or_stopped_status_update(self, tolerance): self.status = PatienceEnum.DECREASING \ if tolerance > 0 \ else PatienceEnum.STOPPED def is_improving(self): return self.status == PatienceEnum.IMPROVING def has_stopped(self): return self.status == PatienceEnum.STOPPED