File size: 5,965 Bytes
3ea78af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c3e0fe
3ea78af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
from argparse import ArgumentParser
import random
import time
import re
from tqdm import tqdm

def get_novel_text_list(data_path, text_length):
    data_list = list()
    with open(data_path, 'r', encoding="utf-8") as f:
        data = f.read()
    data = data.replace(" ", "")
    data_raw = re.sub('\n+', '\n', data)
    data = data_raw.strip().split("\n")
    i = 0
    while i < len(data):
        r = random.randint(int(text_length/2), text_length)
        text = ""
        while len(text) < r:
            if i >= len(data):
                break
            if len(text) > max(- len(data[i]) + r, 0):
                break
            else:
                text += data[i] + "\n"
                i += 1
        text = text.strip()
        data_list.append(text)
    return data_raw, data_list

def get_prompt(input, model_version):
    if model_version == '0.5' or model_version == '0.8':
        prompt = "<reserved_106>将下面的日文文本翻译成中文:" + input + "<reserved_107>"
        return prompt
    if model_version == '0.7':
        prompt = f"<|im_start|>user\n将下面的日文文本翻译成中文:{input}<|im_end|>\n<|im_start|>assistant\n"
        return prompt
    if model_version == '0.1':
        prompt = "Human: \n将下面的日文文本翻译成中文:" + input + "\n\nAssistant: \n"
        return prompt
    if model_version == '0.4':
        prompt = "User: 将下面的日文文本翻译成中文:" + input + "\nAssistant: "
        return prompt

    raise ValueError(f"Wrong model version{model_version}, please view https://huggingface.co/sakuraumi/Sakura-13B-Galgame")

def split_response(response, model_version):
    response = response.replace("</s>", "")
    if model_version == '0.5' or model_version == '0.8':
        output = response.split("<reserved_107>")[1]
        return output
    if model_version == '0.7':
        output = response.split("<|im_start|>assistant\n")[1]
        return output
    if model_version == '0.1':
        output = response.split("\n\nAssistant: \n")[1]
        return output
    if model_version == '0.4':
        output = response.split("\nAssistant: ")[1]
        return output
    
    raise ValueError(f"Wrong model version{model_version}, please view https://huggingface.co/sakuraumi/Sakura-13B-Galgame")

def get_model_response(model: AutoModelForCausalLM, tokenizer: AutoTokenizer, prompt: str, model_version: str, generation_config: GenerationConfig):

    generation = model.generate(**tokenizer(prompt, return_tensors="pt").to(model.device), generation_config=generation_config)[0]
    response = tokenizer.decode(generation)
    output = split_response(response, model_version)
    return output

def get_compare_text(source_text, translated_text):
    source_text_list = source_text.strip().split("\n")
    translated_text_list = translated_text.strip().split("\n")
    output_text = ""
    if len(source_text_list) != len(translated_text_list):
        print("error occurred when output compared text, fallback to output only translated text.")
        return translated_text
    else:
        for i in range(len(source_text_list)):
            output_text += source_text_list[i] + "\n" + translated_text_list[i] + "\n\n"
        output_text = output_text.strip()
        return output_text
    


def main():
    parser = ArgumentParser()
    parser.add_argument("--model_name_or_path", type=str, default="SakuraLLM/Sakura-13B-LNovel-v0.8", help="model huggingface id or local path.")
    parser.add_argument("--use_gptq_model", action="store_true", help="whether your model is gptq quantized.")
    parser.add_argument("--model_version", type=str, default="0.8", help="model version written on huggingface readme, now we have ['0.1', '0.4', '0.5', '0.7', '0.8']")
    parser.add_argument("--data_path", type=str, default="data.txt", help="file path of the text you want to translate.")
    parser.add_argument("--output_path", type=str, default="data_translated.txt", help="save path of the text model translated.")
    parser.add_argument("--text_length", type=int, default=512, help="input max length in each inference.")
    parser.add_argument("--compare_text", action="store_true", help="whether to output with both source text and translated text in order to compare.")
    args = parser.parse_args()

    if args.use_gptq_model:
        from auto_gptq import AutoGPTQForCausalLM

    generation_config = GenerationConfig(
        temperature=0.1,
        top_p=0.3,
        top_k=40,
        num_beams=1,
        bos_token_id=1,
        eos_token_id=2,
        pad_token_id=0,
        max_new_tokens=1024,
        min_new_tokens=1,
        do_sample=True
    )

    print("loading...")
    tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=False, trust_remote_code=True)

    if args.use_gptq_model:
        model = AutoGPTQForCausalLM.from_quantized(args.model_name_or_path, device="cuda:0", trust_remote_code=True)
    else:
        model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, device_map="auto", trust_remote_code=True)

    print("translating...")
    start = time.time()

    data_raw, data_list = get_novel_text_list(args.data_path, args.text_length)
    data = ""
    for d in tqdm(data_list):
        prompt = get_prompt(d, args.model_version)
        output = get_model_response(model, tokenizer, prompt, args.model_version, generation_config)
        data += output.strip() + "\n"

    end = time.time()
    print("translation completed, used time: ", end-start)

    print("saving...")
    if args.compare_text:
        with open(args.output_path, 'w', encoding='utf-8') as f_w:
            f_w.write(get_compare_text(data_raw, data))
    else:
        with open(args.output_path, 'w', encoding='utf-8') as f_w:
            f_w.write(data)

    print("completed.")

if __name__ == "__main__":

    main()