--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_baseline_organization_task8_fold0 results: [] --- # arabert_baseline_organization_task8_fold0 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4941 - Qwk: 0.6010 - Mse: 0.4941 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:| | No log | 0.5 | 2 | 1.4026 | 0.0558 | 1.4026 | | No log | 1.0 | 4 | 1.1702 | 0.0 | 1.1702 | | No log | 1.5 | 6 | 1.0793 | -0.0294 | 1.0793 | | No log | 2.0 | 8 | 1.0475 | 0.4031 | 1.0475 | | No log | 2.5 | 10 | 0.9473 | 0.5191 | 0.9473 | | No log | 3.0 | 12 | 0.8743 | 0.3158 | 0.8743 | | No log | 3.5 | 14 | 0.7934 | 0.3158 | 0.7934 | | No log | 4.0 | 16 | 0.6914 | 0.4324 | 0.6914 | | No log | 4.5 | 18 | 0.6177 | 0.4940 | 0.6177 | | No log | 5.0 | 20 | 0.5611 | 0.4940 | 0.5611 | | No log | 5.5 | 22 | 0.5294 | 0.5714 | 0.5294 | | No log | 6.0 | 24 | 0.5033 | 0.5670 | 0.5033 | | No log | 6.5 | 26 | 0.4918 | 0.6010 | 0.4918 | | No log | 7.0 | 28 | 0.4919 | 0.6010 | 0.4919 | | No log | 7.5 | 30 | 0.4963 | 0.6010 | 0.4963 | | No log | 8.0 | 32 | 0.4997 | 0.6010 | 0.4997 | | No log | 8.5 | 34 | 0.4990 | 0.6010 | 0.4990 | | No log | 9.0 | 36 | 0.4963 | 0.6010 | 0.4963 | | No log | 9.5 | 38 | 0.4948 | 0.6010 | 0.4948 | | No log | 10.0 | 40 | 0.4941 | 0.6010 | 0.4941 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1