--- base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: arabert_baseline_vocabulary_task1_fold0 results: [] --- # arabert_baseline_vocabulary_task1_fold0 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6498 - Qwk: 0.6216 - Mse: 0.6722 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:| | No log | 0.3333 | 2 | 4.6252 | -0.0554 | 4.6618 | | No log | 0.6667 | 4 | 1.9114 | 0.1179 | 1.9451 | | No log | 1.0 | 6 | 0.9690 | 0.1617 | 1.0110 | | No log | 1.3333 | 8 | 0.8689 | 0.3771 | 0.9143 | | No log | 1.6667 | 10 | 0.7767 | 0.3636 | 0.8305 | | No log | 2.0 | 12 | 0.7835 | 0.3652 | 0.8429 | | No log | 2.3333 | 14 | 0.7429 | 0.5097 | 0.7956 | | No log | 2.6667 | 16 | 0.7735 | 0.4543 | 0.8152 | | No log | 3.0 | 18 | 0.8347 | 0.4231 | 0.8732 | | No log | 3.3333 | 20 | 0.7428 | 0.4755 | 0.7774 | | No log | 3.6667 | 22 | 0.7764 | 0.5241 | 0.8145 | | No log | 4.0 | 24 | 0.7551 | 0.5241 | 0.7880 | | No log | 4.3333 | 26 | 0.7760 | 0.4815 | 0.8052 | | No log | 4.6667 | 28 | 0.8464 | 0.4103 | 0.8794 | | No log | 5.0 | 30 | 0.7218 | 0.5290 | 0.7519 | | No log | 5.3333 | 32 | 0.7204 | 0.5241 | 0.7555 | | No log | 5.6667 | 34 | 0.7510 | 0.5634 | 0.7913 | | No log | 6.0 | 36 | 0.6866 | 0.5634 | 0.7239 | | No log | 6.3333 | 38 | 0.6265 | 0.5592 | 0.6598 | | No log | 6.6667 | 40 | 0.6769 | 0.5913 | 0.7100 | | No log | 7.0 | 42 | 0.6960 | 0.5913 | 0.7277 | | No log | 7.3333 | 44 | 0.6638 | 0.5913 | 0.6914 | | No log | 7.6667 | 46 | 0.6521 | 0.5987 | 0.6776 | | No log | 8.0 | 48 | 0.6739 | 0.6369 | 0.6999 | | No log | 8.3333 | 50 | 0.6666 | 0.6369 | 0.6916 | | No log | 8.6667 | 52 | 0.6558 | 0.6655 | 0.6793 | | No log | 9.0 | 54 | 0.6498 | 0.6216 | 0.6729 | | No log | 9.3333 | 56 | 0.6487 | 0.6216 | 0.6712 | | No log | 9.6667 | 58 | 0.6495 | 0.6216 | 0.6718 | | No log | 10.0 | 60 | 0.6498 | 0.6216 | 0.6722 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1