File size: 3,816 Bytes
c82aa67
072a1fc
c82aa67
072a1fc
 
 
c82aa67
072a1fc
 
 
c82aa67
 
072a1fc
 
c82aa67
072a1fc
 
c82aa67
072a1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c82aa67
 
 
 
072a1fc
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
---
license: other
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: Qwen/Qwen1.5-4B
model-index:
- name: qwen_1.5_odia_4b
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: Qwen/Qwen1.5-4B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

# is_qwen_derived_model: true
trust_remote_code: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: OdiaGenAI/all_combined_odia_171k
    type: alpaca:chatml
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lora-out-qwen-4b-odia
hub_model_id: sam2ai/qwen_1.5_odia_4b

sequence_len: 2048  # supports up to 8192
sample_packing: false
pad_to_sequence_len:

adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project: Qwen-instruct-4b-odia
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention:

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

```

</details><br>

# qwen_1.5_odia_4b

This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3421

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.977         | 0.0   | 1     | 1.0190          |
| 0.4901        | 0.25  | 2108  | 0.4872          |
| 0.3966        | 0.5   | 4216  | 0.4347          |
| 0.3127        | 0.75  | 6324  | 0.4104          |
| 0.3172        | 1.0   | 8432  | 0.3932          |
| 0.281         | 1.25  | 10540 | 0.3778          |
| 0.2845        | 1.5   | 12648 | 0.3684          |
| 0.2459        | 1.75  | 14756 | 0.3616          |
| 0.1641        | 2.0   | 16864 | 0.3525          |
| 0.2121        | 2.25  | 18972 | 0.3506          |
| 0.2564        | 2.5   | 21080 | 0.3448          |
| 0.1378        | 2.75  | 23188 | 0.3426          |
| 0.2002        | 3.0   | 25296 | 0.3409          |
| 0.1671        | 3.25  | 27404 | 0.3439          |
| 0.1464        | 3.5   | 29512 | 0.3421          |
| 0.1741        | 3.75  | 31620 | 0.3421          |


### Framework versions

- PEFT 0.8.2
- Transformers 4.37.0
- Pytorch 2.0.1+gita61a294
- Datasets 2.16.1
- Tokenizers 0.15.0