--- license: other library_name: peft tags: - axolotl - generated_from_trainer base_model: Qwen/Qwen1.5-4B model-index: - name: qwen_1.5_odia_4b results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: Qwen/Qwen1.5-4B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer # is_qwen_derived_model: true trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: OdiaGenAI/all_combined_odia_171k type: alpaca:chatml dataset_prepared_path: val_set_size: 0.05 output_dir: ./lora-out-qwen-4b-odia hub_model_id: sam2ai/qwen_1.5_odia_4b sequence_len: 2048 # supports up to 8192 sample_packing: false pad_to_sequence_len: adapter: qlora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: Qwen-instruct-4b-odia wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 1 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# qwen_1.5_odia_4b This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.977 | 0.0 | 1 | 1.0190 | | 0.4901 | 0.25 | 2108 | 0.4872 | | 0.3966 | 0.5 | 4216 | 0.4347 | | 0.3127 | 0.75 | 6324 | 0.4104 | | 0.3172 | 1.0 | 8432 | 0.3932 | | 0.281 | 1.25 | 10540 | 0.3778 | | 0.2845 | 1.5 | 12648 | 0.3684 | | 0.2459 | 1.75 | 14756 | 0.3616 | | 0.1641 | 2.0 | 16864 | 0.3525 | | 0.2121 | 2.25 | 18972 | 0.3506 | | 0.2564 | 2.5 | 21080 | 0.3448 | | 0.1378 | 2.75 | 23188 | 0.3426 | | 0.2002 | 3.0 | 25296 | 0.3409 | | 0.1671 | 3.25 | 27404 | 0.3439 | | 0.1464 | 3.5 | 29512 | 0.3421 | | 0.1741 | 3.75 | 31620 | 0.3421 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.0 - Pytorch 2.0.1+gita61a294 - Datasets 2.16.1 - Tokenizers 0.15.0