--- license: llama2 datasets: - bigcode/the-stack - NumbersStation/NSText2SQL language: - en --- # nova-nsql-Llama-2-70B ## Model Description NSQL is a family of autoregressive open-source large foundation models (FMs) designed specifically for SQL generation tasks. In this repository we are introducing a new member of NSQL, NSQL-Llama-2-70B. It's based on Meta's original [Llama-2 70B model](https://huggingface.co/meta-llama/Llama-2-70b) and further pre-trained on a dataset of general SQL queries and then fine-tuned on a dataset composed of text-to-SQL pairs. Use of this model is governed by the Meta’s Llama 2 Community License Agreement. Please review and accept the license before downloading the model weights and tokenizer ### Basic Information - **Blog Post**: [Link](TBA) - **HF Hosting**: [Chat with me!](TBA) ## Training Data The general SQL queries are the SQL subset from [The Stack](https://huggingface.co/datasets/bigcode/the-stack), containing 1M training samples. The labeled text-to-SQL pairs come from the NSText2SQL dataset (https://huggingface.co/datasets/NumbersStation/NSText2SQL). ## Evaluation Data We evaluate our models on three text-to-SQL benchmarks: Spider, Bird, and text2sql. ## Training Procedure NSQL was trained using cross-entropy loss to maximize the likelihood of sequential inputs. For finetuning on text-to-SQL pairs, we only compute the loss over the SQL portion of the pair. The model is trained using SambaNova's in-house Reconfigurable Dataflow Unit (RDU), leveraging data and model parallelism. We pre-trained for 2 epochs and fine-tuned for 10 epochs. ### Hyperparameters **Continous pretraining on Stack-SQL dataset** - Hardware: SambaNova Reconfigurable Dataflow Unit (RDU) - Optimizer: AdamW - Epochs: 2 - Global Batch size: 256 - Batch tokens: 256 * 4096 = 1,048,576 tokens - Learning Rate: 1e-5 - Learning Rate Scheduler: Fixed - Warmup Steps: 0 - Weight decay: 0.1 **Finetuning on NSText2SQL dataset** - Hardware: SambaNova Reconfigurable Dataflow Unit (RDU) - Optimizer: AdamW - Epochs: 10 - Global Batch size: 64 - Batch tokens: 64 * 4096 = 262,144 tokens - Learning Rate: 1e-5 - Learning Rate Scheduler: Cosine Schedule with Warmup - Warmup Steps: 0 - End Learning Ratio: 0.1 - Weight decay: 0.1 ## Intended Use and Limitations The model was designed for text-to-SQL generation tasks from given table schema and natural language prompts. The model works best with the prompt format defined below and outputting `SELECT` queries. ## How to Use ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("sambanovasystems/nova-nsql-Llama-2-70B") model = AutoModelForCausalLM.from_pretrained("sambanovasystems/nova-nsql-Llama-2-70B", torch_dtype=torch.bfloat16) text = "CREATE TABLE stadium (\n stadium_id number,\n location text,\n name text,\n capacity number,\n highest number,\n lowest number,\n average number\n)\n\nCREATE TABLE singer (\n singer_id number,\n name text,\n country text,\n song_name text,\n song_release_year text,\n age number,\n is_male others\n)\n\nCREATE TABLE concert (\n concert_id number,\n concert_name text,\n theme text,\n stadium_id text,\n year text\n)\n\nCREATE TABLE singer_in_concert (\n concert_id number,\n singer_id text\n)\n\n\n-- Using valid SQLite, answer the following questions for the tables provided above.\n\n-- What is the average, minimum, and maximum age of all singers from France?\nSELECT" ```