File size: 7,909 Bytes
5dde370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import json
import os
import re
import pandas as pd
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from sklearn.feature_extraction.text import TfidfVectorizer
from typing import List, Dict, Any
from tqdm import tqdm
import hashlib

# 下载必要的NLTK资源
required_packages = ['punkt', 'stopwords', 'wordnet']
for package in required_packages:
    try:
        nltk.data.find(f'tokenizers/{package}' if package == 'punkt' else f'corpora/{package}')
        print(f"Package {package} is already downloaded.")
    except LookupError:
        print(f"Downloading NLTK {package}...")
        nltk.download(package)

class QAProcessor:
    def __init__(self, data_dir: str, output_path: str):
        self.data_dir = data_dir
        self.output_path = output_path
        self.lemmatizer = WordNetLemmatizer()
        self.stop_words = set(stopwords.words('english'))
        self.medical_stopwords = {'disease', 'patient', 'treatment', 'condition', 'symptom', 'doctor', 'health', 'may', 'also', 'one', 'use'}
        self.stop_words.update(self.medical_stopwords)
        
    def clean_text(self, text: str) -> str:
        """清理文本"""
        if isinstance(text, str):
            # 移除HTML标签
            text = re.sub(r'<.*?>', ' ', text)
            # 移除特殊字符但保留字母和数字
            text = re.sub(r'[^\w\s]', ' ', text)
            # 移除多余的空格
            text = re.sub(r'\s+', ' ', text).strip().lower()
            return text
        return ""

    def simple_tokenize(self, text: str) -> List[str]:
        """简单的分词函数"""
        text = text.lower().strip()
        tokens = re.findall(r'\b\w+\b', text)
        return tokens

    def extract_keywords(self, text: str, top_n: int = 10) -> List[str]:
        """使用TF-IDF提取关键词"""
        if not isinstance(text, str) or not text.strip():
            return []
        
        tokens = self.simple_tokenize(text)
        filtered_tokens = [self.lemmatizer.lemmatize(token) 
                         for token in tokens 
                         if token.isalpha() and token not in self.stop_words and len(token) > 2]
        
        if filtered_tokens:
            vectorizer = TfidfVectorizer(max_features=top_n)
            try:
                tfidf_matrix = vectorizer.fit_transform([' '.join(filtered_tokens)])
                feature_names = vectorizer.get_feature_names_out()
                
                scores = zip(feature_names, tfidf_matrix.toarray()[0])
                sorted_scores = sorted(scores, key=lambda x: x[1], reverse=True)
                
                return [word for word, score in sorted_scores[:top_n] if score > 0]
            except Exception as e:
                print(f"TF-IDF提取失败: {e}")
                return filtered_tokens[:top_n]
        return []

    def process_data(self) -> tuple[List[Dict[str, Any]], Dict[str, List[str]]]:
        """处理所有数据源"""
        qa_database = []
        keyword_index = {}  # 倒排索引:keyword → [qa_id1, qa_id2, ...]

        # 处理Healthline文章
        healthline_path = os.path.join(self.data_dir,'Healthline', 'healthline_articles_text.csv')
        if os.path.exists(healthline_path):
            print("处理Healthline数据...")
            healthline_df = pd.read_csv(healthline_path)
            for idx, row in tqdm(healthline_df.iterrows(), total=len(healthline_df)):
                title = row.get('title', '')
                content = row.get('content', '')
                
                if not isinstance(title, str) or not isinstance(content, str):
                    continue
                    
                clean_title = self.clean_text(title)
                clean_content = self.clean_text(content)
                
                qa_pair = {
                    'id': f"healthline_{idx}",
                    'source': 'healthline',
                    'question': clean_title,
                    'answer': clean_content,
                    'keywords': self.extract_keywords(clean_title + " " + clean_content)
                }
                
                qa_database.append(qa_pair)
                
                # 更新倒排索引
                for keyword in qa_pair['keywords']:
                    if keyword not in keyword_index:
                        keyword_index[keyword] = []
                    keyword_index[keyword].append(qa_pair['id'])

        # 处理MedQA数据
        medqa_dir = os.path.join(self.data_dir, 'MedQA')
        if os.path.exists(medqa_dir):
            print("处理MedQA数据...")
            for file_name in os.listdir(medqa_dir):
                if file_name.endswith('.csv'):
                    dataset_name = file_name.split('.')[0]
                    df = pd.read_csv(os.path.join(medqa_dir, file_name))
                    
                    question_col = next((col for col in ['Question', 'question'] if col in df.columns), None)
                    answer_col = next((col for col in ['Answer', 'answer'] if col in df.columns), None)
                    
                    if not question_col or not answer_col:
                        print(f"跳过 {dataset_name} - 缺少问题/答案列")
                        continue
                    
                    for idx, row in tqdm(df.iterrows(), total=len(df)):
                        question = row.get(question_col, '')
                        answer = row.get(answer_col, '')
                        
                        if not isinstance(question, str) or not isinstance(answer, str):
                            continue
                            
                        clean_question = self.clean_text(question)
                        clean_answer = self.clean_text(answer)
                        
                        qa_pair = {
                            'id': f"{dataset_name}_{idx}",
                            'source': dataset_name,
                            'question': clean_question,
                            'answer': clean_answer,
                            'keywords': self.extract_keywords(clean_question + " " + clean_answer)
                        }
                        
                        qa_database.append(qa_pair)
                        
                        for keyword in qa_pair['keywords']:
                            if keyword not in keyword_index:
                                keyword_index[keyword] = []
                            keyword_index[keyword].append(qa_pair['id'])

        return qa_database, keyword_index

    def save_results(self, qa_database: List[Dict[str, Any]], keyword_index: Dict[str, List[str]]):
        """保存处理后的数据"""
        
        qa_output = os.path.join(self.output_path, 'cleaned_qa','qa_database.json')
        keyword_output = os.path.join(self.output_path, 'keywords','keyword_index.json')
        os.makedirs(os.path.dirname(qa_output), exist_ok=True)
        os.makedirs(os.path.dirname(keyword_output), exist_ok=True)

        
        with open(qa_output, 'w', encoding='utf-8') as f:
            json.dump(qa_database, f, ensure_ascii=False, indent=2)
            
        with open(keyword_output, 'w', encoding='utf-8') as f:
            json.dump(keyword_index, f, ensure_ascii=False, indent=2)
            
        print(f"处理完成的QA对数量: {len(qa_database)}")
        print(f"关键词索引中的关键词数量: {len(keyword_index)}")
        print(f"数据已保存到: {self.output_path}")

if __name__ == "__main__":
    # 设置路径
    data_dir = './Data/raw'
    output_path = './Data/Processed/'
    
    # 创建处理器实例并处理数据
    processor = QAProcessor(data_dir, output_path)
    qa_database, keyword_index = processor.process_data()
    processor.save_results(qa_database, keyword_index)