File size: 25,299 Bytes
5dde370 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 |
import numpy as np
from chromadb import Client, Settings
from sklearn.decomposition import PCA
import hdbscan
from sklearn.cluster import KMeans, OPTICS
from sklearn.metrics import silhouette_score, calinski_harabasz_score
import matplotlib.pyplot as plt
from typing import List, Dict, Any, Tuple
import seaborn as sns
from tqdm import tqdm
import joblib
import os
import json
import argparse
from datetime import datetime
import warnings
# 添加 RAPIDS cuML 库导入
import cudf
import cuml
from cuml.cluster import HDBSCAN as cuHDBSCAN
from cuml.cluster import KMeans as cuKMeans
from cuml.manifold import UMAP as cuUMAP
import cupy as cp
# 忽略特定的警告
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=UserWarning)
class ClusterAnalyzer:
def __init__(self, chroma_uri: str = "./Data/database", output_dir: str = None, experiment_name: str = None, use_gpu: bool = True):
self.chroma_uri = chroma_uri
self.client = Client(Settings(
persist_directory=chroma_uri,
anonymized_telemetry=False,
is_persistent=True
))
self.collection = self.client.get_collection("healthcare_qa")
self.embeddings = None
self.reduced_embeddings = None
self.labels = None
self.use_gpu = use_gpu
# 创建结果保存目录
self.results_dir = output_dir if output_dir else "./clustering_results"
os.makedirs(self.results_dir, exist_ok=True)
# 设置实验名称
self.experiment_name = experiment_name if experiment_name else f"experiment_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
# 实验结果
self.experiment_results = {
"experiment_name": self.experiment_name,
"timestamp": datetime.now().isoformat(),
"parameters": {},
"metrics": {}
}
def load_embeddings(self) -> np.ndarray:
"""加载数据库中的embeddings"""
print("正在加载embeddings...")
cache_file = '/home/dyvm6xra/dyvm6xrauser11/workspace/projects/HKU/Chatbot/Data/Embeddings/embeddings_703df19c43bd6565563071b97e7172ce.npy'
if os.path.exists(cache_file):
self.embeddings = np.load(cache_file)
print(f"从缓存文件加载embeddings,数据形状: {self.embeddings.shape}")
else:
result = self.collection.get(include=["embeddings"])
self.embeddings = np.array(result["embeddings"])
np.save(cache_file, self.embeddings)
print(f"从数据库加载embeddings,并保存到缓存文件,数据形状: {self.embeddings.shape}")
self.experiment_results["data_info"] = {
"embeddings_shape": self.embeddings.shape
}
return self.embeddings
def reduce_dimensions(self, method: str = "umap", n_components: int = 50,
umap_n_neighbors: int = 50, umap_min_dist: float = 0.2) -> np.ndarray:
"""降维处理
Args:
method: 降维方法,可选 "umap" 或 "pca"
n_components: 降维后的维度
umap_n_neighbors: UMAP的邻居数量参数
umap_min_dist: UMAP的最小距离参数
"""
if self.embeddings is None:
self.load_embeddings()
print(f"使用 {method} 进行降维...")
# 记录降维参数
self.experiment_results["parameters"]["dimension_reduction"] = {
"method": method,
"n_components": n_components
}
# # 保存降维结果的文件路径
# reduced_file = os.path.join(self.results_dir, f"{self.experiment_name}_{method}_reduced_embeddings.joblib")
if method.lower() == "umap":
# 更新实验参数
self.experiment_results["parameters"]["dimension_reduction"].update({
"umap_n_neighbors": umap_n_neighbors,
"umap_min_dist": umap_min_dist
})
if self.use_gpu:
print("使用 GPU 加速的 UMAP...")
# 将 numpy 数组转换为 cupy 数组
embeddings_gpu = cp.array(self.embeddings)
# 使用 cuML 的 UMAP
reducer = cuUMAP(
n_components=n_components,
n_neighbors=umap_n_neighbors,
min_dist=umap_min_dist,
metric='cosine',
random_state=42,
verbose=True
)
self.reduced_embeddings = reducer.fit_transform(embeddings_gpu)
# 将结果转回 CPU
self.reduced_embeddings = cp.asnumpy(self.reduced_embeddings)
else:
# 使用 CPU 版本的 UMAP
reducer = UMAP(
n_components=n_components,
n_neighbors=umap_n_neighbors,
min_dist=umap_min_dist,
metric='cosine',
random_state=42,
n_jobs=-1,
low_memory=True,
verbose=True
)
self.reduced_embeddings = reducer.fit_transform(self.embeddings)
elif method.lower() == "pca":
reducer = PCA(
n_components=n_components,
random_state=42,
svd_solver='randomized' # 对大数据集更高效
)
self.reduced_embeddings = reducer.fit_transform(self.embeddings)
cumulative_variance = np.cumsum(reducer.explained_variance_ratio_)
print(f"PCA累积解释方差比: {cumulative_variance[-1]:.4f}")
# 更新实验结果
self.experiment_results["metrics"]["pca_cumulative_variance"] = float(cumulative_variance[-1])
# 绘制解释方差比曲线
plt.figure(figsize=(10, 5))
plt.plot(range(1, len(cumulative_variance) + 1), cumulative_variance, 'bo-')
plt.xlabel('主成分数量')
plt.ylabel('累积解释方差比')
plt.title('PCA Cumulative Explained Variance Ratio')
plt.grid(True)
plt.savefig(os.path.join(self.results_dir, f'{self.experiment_name}_pca_variance_ratio.png'))
plt.close()
# # 保存降维结果
# joblib.dump(self.reduced_embeddings, reduced_file)
# print(f"降维结果已保存至: {reduced_file}")
return self.reduced_embeddings
def cluster_hdbscan(self, min_cluster_size: int = 100, min_samples: int = 10) -> np.ndarray:
"""使用HDBSCAN进行聚类"""
print("使用HDBSCAN进行聚类...")
data = self.reduced_embeddings if self.reduced_embeddings is not None else self.embeddings
# 记录聚类参数
self.experiment_results["parameters"]["clustering"] = {
"method": "hdbscan",
"min_cluster_size": min_cluster_size,
"min_samples": min_samples
}
if self.use_gpu:
print("使用 GPU 加速的 HDBSCAN...")
# 将数据转换为 GPU 上的数据
data_gpu = cp.array(data)
# 使用 cuML 的 HDBSCAN
clusterer = cuHDBSCAN(
min_cluster_size=min_cluster_size,
min_samples=min_samples,
metric='euclidean',
cluster_selection_epsilon=0.0, # cuML HDBSCAN 使用 epsilon 而不是 method
allow_single_cluster=False,
verbose=True
)
clusterer.fit(data_gpu)
self.labels = cp.asnumpy(clusterer.labels_)
else:
from umap import UMAP
# 对于大规模数据集的优化参数 (CPU 版本)
clusterer = hdbscan.HDBSCAN(
min_cluster_size=min_cluster_size,
min_samples=min_samples,
metric='euclidean',
cluster_selection_method='eom',
prediction_data=True,
core_dist_n_jobs=64
)
self.labels = clusterer.fit_predict(data)
n_clusters = len(set(self.labels)) - (1 if -1 in self.labels else 0)
n_noise = list(self.labels).count(-1)
noise_ratio = n_noise / len(self.labels)
print(f"发现 {n_clusters} 个聚类")
print(f"噪声点数量: {n_noise} ({noise_ratio:.2%})")
# 计算评估指标
if n_clusters > 1: # 需要至少两个簇才能计算
try:
silhouette_avg = silhouette_score(data, self.labels, sample_size=10000)
calinski_avg = calinski_harabasz_score(data, self.labels)
print(f"轮廓系数: {silhouette_avg:.4f}")
print(f"Calinski-Harabasz指数: {calinski_avg:.4f}")
# 更新实验结果
self.experiment_results["metrics"].update({
"silhouette_score": float(silhouette_avg),
"calinski_harabasz_score": float(calinski_avg)
})
except Exception as e:
print(f"计算评估指标时出错: {e}")
# 更新实验结果
self.experiment_results["metrics"].update({
"n_clusters": n_clusters,
"n_noise": n_noise,
"noise_ratio": float(noise_ratio)
})
# 保存聚类结果
results = {
'labels': self.labels,
'n_clusters': n_clusters,
'n_noise': n_noise,
'noise_ratio': noise_ratio
}
# joblib.dump(results, os.path.join(self.results_dir, f'{self.experiment_name}_hdbscan_results.joblib'))
return self.labels
def cluster_optics(self, min_samples: int = 50, max_eps: float = 0.5) -> np.ndarray:
"""使用OPTICS进行聚类"""
print("使用OPTICS进行聚类...")
data = self.reduced_embeddings if self.reduced_embeddings is not None else self.embeddings
# 记录聚类参数
self.experiment_results["parameters"]["clustering"] = {
"method": "optics",
"min_samples": min_samples,
"max_eps": max_eps
}
# 对大规模数据集优化的OPTICS参数
clustering = OPTICS(
min_samples=min_samples,
max_eps=max_eps,
metric='euclidean',
n_jobs=-1 # 使用所有CPU核心
)
self.labels = clustering.fit_predict(data)
n_clusters = len(set(self.labels)) - (1 if -1 in self.labels else 0)
n_noise = list(self.labels).count(-1)
noise_ratio = n_noise / len(self.labels)
print(f"发现 {n_clusters} 个聚类")
print(f"噪声点数量: {n_noise} ({noise_ratio:.2%})")
# 计算评估指标
if n_clusters > 1: # 需要至少两个簇才能计算
try:
silhouette_avg = silhouette_score(data, self.labels, sample_size=10000)
calinski_avg = calinski_harabasz_score(data, self.labels)
print(f"轮廓系数: {silhouette_avg:.4f}")
print(f"Calinski-Harabasz指数: {calinski_avg:.4f}")
# 更新实验结果
self.experiment_results["metrics"].update({
"silhouette_score": float(silhouette_avg),
"calinski_harabasz_score": float(calinski_avg)
})
except Exception as e:
print(f"计算评估指标时出错: {e}")
# 更新实验结果
self.experiment_results["metrics"].update({
"n_clusters": n_clusters,
"n_noise": n_noise,
"noise_ratio": float(noise_ratio)
})
# 保存结果
results = {
'labels': self.labels,
'n_clusters': n_clusters,
'n_noise': n_noise,
'noise_ratio': noise_ratio
}
# joblib.dump(results, os.path.join(self.results_dir, f'{self.experiment_name}_optics_results.joblib'))
return self.labels
def cluster_kmeans(self, n_clusters: int = 100) -> Tuple[np.ndarray, float]:
"""使用K-means进行聚类"""
print("使用K-means进行聚类...")
data = self.reduced_embeddings if self.reduced_embeddings is not None else self.embeddings
# 记录聚类参数
self.experiment_results["parameters"]["clustering"] = {
"method": "kmeans",
"n_clusters": n_clusters
}
if self.use_gpu:
print("使用 GPU 加速的 KMeans...")
# 将数据转换为 GPU 上的数据
data_gpu = cp.array(data)
# 使用 cuML 的 KMeans
kmeans = cuKMeans(
n_clusters=n_clusters,
random_state=42,
n_init=10,
max_iter=300,
verbose=1
)
kmeans.fit(data_gpu)
self.labels = cp.asnumpy(kmeans.labels_)
inertia = float(kmeans.inertia_)
else:
# 对大规模数据优化的 CPU K-means 参数
kmeans = KMeans(
n_clusters=n_clusters,
random_state=42,
n_init=10,
max_iter=300,
algorithm='elkan',
n_jobs=-1
)
self.labels = kmeans.fit_predict(data)
inertia = kmeans.inertia_
# 计算评估指标
try:
silhouette_avg = silhouette_score(data, self.labels, sample_size=10000)
calinski_avg = calinski_harabasz_score(data, self.labels)
print(f"聚类数量: {n_clusters}")
print(f"轮廓系数: {silhouette_avg:.4f}")
print(f"Calinski-Harabasz指数: {calinski_avg:.4f}")
# 更新实验结果
self.experiment_results["metrics"].update({
"silhouette_score": float(silhouette_avg),
"calinski_harabasz_score": float(calinski_avg),
"inertia": float(inertia)
})
except Exception as e:
print(f"计算评估指标时出错: {e}")
# 保存结果
results = {
'labels': self.labels,
'inertia': inertia
}
# joblib.dump(results, os.path.join(self.results_dir, f'{self.experiment_name}_kmeans_results.joblib'))
return self.labels, silhouette_avg
def find_optimal_k(self, k_range: range) -> int:
"""使用肘部法则和多个评估指标找到最佳的K值"""
print("寻找最佳K值...")
data = self.reduced_embeddings if self.reduced_embeddings is not None else self.embeddings
if self.use_gpu:
# 将数据转换为 GPU 上的数据
data_gpu = cp.array(data)
results = []
for k in tqdm(k_range):
if self.use_gpu:
kmeans = cuKMeans(
n_clusters=k,
random_state=42,
n_init=5,
max_iter=300,
verbose=0
)
kmeans.fit(data_gpu)
labels = cp.asnumpy(kmeans.labels_)
inertia = float(kmeans.inertia_)
else:
kmeans = KMeans(
n_clusters=k,
random_state=42,
n_init=5,
algorithm='elkan',
n_jobs=-1
)
labels = kmeans.fit_predict(data)
inertia = kmeans.inertia_
# 计算多个评估指标
silhouette_avg = silhouette_score(data, labels, sample_size=10000)
calinski_avg = calinski_harabasz_score(data, labels)
results.append({
'k': k,
'inertia': float(inertia),
'silhouette': float(silhouette_avg),
'calinski': float(calinski_avg)
})
# 保存结果
# joblib.dump(results, os.path.join(self.results_dir, f'{self.experiment_name}_kmeans_optimization.joblib'))
# 更新实验结果
self.experiment_results["kmeans_optimization"] = results
# 绘制评估指标图
plt.figure(figsize=(15, 5))
# 绘制肘部图
plt.subplot(1, 3, 1)
plt.plot([r['k'] for r in results], [r['inertia'] for r in results], 'bx-')
plt.xlabel('k')
plt.ylabel('Inertia')
plt.title('Elbow Method')
# 绘制轮廓系数
plt.subplot(1, 3, 2)
plt.plot([r['k'] for r in results], [r['silhouette'] for r in results], 'rx-')
plt.xlabel('k')
plt.ylabel('Silhouette Score')
plt.title('Silhouette Analysis')
# 绘制Calinski-Harabasz指数
plt.subplot(1, 3, 3)
plt.plot([r['k'] for r in results], [r['calinski'] for r in results], 'gx-')
plt.xlabel('k')
plt.ylabel('Calinski-Harabasz Score')
plt.title('Calinski-Harabasz Analysis')
plt.tight_layout()
plt.savefig(os.path.join(self.results_dir, f'{self.experiment_name}_kmeans_optimization.png'))
plt.close()
# 基于轮廓系数选择最佳K值
best_k = max(results, key=lambda x: x['silhouette'])['k']
# 更新实验结果
self.experiment_results["metrics"]["best_k"] = best_k
return best_k
def visualize_clusters(self, title: str = "Cluster Visualization", sample_size: int = 10000):
"""可视化聚类结果(使用采样来处理大规模数据)"""
if self.reduced_embeddings is None or self.labels is None:
print("请先进行降维和聚类")
return
if self.reduced_embeddings.shape[1] != 2:
print("只能可视化2维数据,请先使用reduce_dimensions降至2维")
return
# 对大规模数据进行采样
if len(self.labels) > sample_size:
indices = np.random.choice(len(self.labels), sample_size, replace=False)
reduced_data = self.reduced_embeddings[indices]
labels = self.labels[indices]
else:
reduced_data = self.reduced_embeddings
labels = self.labels
plt.figure(figsize=(12, 8))
scatter = plt.scatter(
reduced_data[:, 0],
reduced_data[:, 1],
c=labels,
cmap='tab20',
alpha=0.6,
s=20 # 减小点的大小
)
plt.colorbar(scatter)
plt.title(f"{title}\n(Sampled {sample_size:,} points)")
# 保存图片
plt.savefig(os.path.join(self.results_dir, f'{self.experiment_name}_cluster_visualization.png'))
plt.close()
def save_results(self):
"""保存实验结果到JSON文件"""
# 添加时间戳
self.experiment_results["end_time"] = datetime.now().isoformat()
# 保存到JSON文件
results_file = os.path.join(self.results_dir, f'{self.experiment_name}_results.json')
with open(results_file, 'w') as f:
json.dump(self.experiment_results, f, indent=2)
print(f"实验结果已保存至: {results_file}")
return results_file
def parse_args():
parser = argparse.ArgumentParser(description="聚类实验")
# 实验名称
parser.add_argument("--name", type=str, default=None, help="实验名称")
# 数据库路径
parser.add_argument("--db_path", type=str, default="./Data/database", help="ChromaDB数据库路径")
# 输出目录
parser.add_argument("--output_dir", type=str, default="./clustering_results", help="结果输出目录")
# 降维方法
parser.add_argument("--dim_reduction", type=str, choices=["pca", "umap", "pca_umap"], default="pca_umap",
help="降维方法: pca, umap, 或 pca_umap (两步降维)")
# PCA参数
parser.add_argument("--pca_components", type=int, default=50, help="PCA降维后的维度")
# UMAP参数
parser.add_argument("--umap_components", type=int, default=2, help="UMAP降维后的维度")
parser.add_argument("--umap_neighbors", type=int, default=50, help="UMAP邻居数量")
parser.add_argument("--umap_min_dist", type=float, default=0.2, help="UMAP最小距离")
# 聚类方法
parser.add_argument("--clustering", type=str, choices=["hdbscan", "kmeans", "optics"], default="hdbscan",
help="聚类方法: hdbscan, kmeans, 或 optics")
# HDBSCAN参数
parser.add_argument("--hdbscan_min_cluster_size", type=int, default=100, help="HDBSCAN最小簇大小")
parser.add_argument("--hdbscan_min_samples", type=int, default=10, help="HDBSCAN最小样本数")
# OPTICS参数
parser.add_argument("--optics_min_samples", type=int, default=50, help="OPTICS最小样本数")
parser.add_argument("--optics_max_eps", type=float, default=0.5, help="OPTICS最大邻域距离")
# KMeans参数
parser.add_argument("--kmeans_clusters", type=int, default=0,
help="KMeans聚类数量 (0表示自动寻找最佳K值)")
parser.add_argument("--kmeans_min_k", type=int, default=50, help="寻找最佳K值的最小K")
parser.add_argument("--kmeans_max_k", type=int, default=200, help="寻找最佳K值的最大K")
parser.add_argument("--kmeans_step", type=int, default=10, help="寻找最佳K值的步长")
# 添加 GPU 选项
parser.add_argument("--use_gpu", action="store_true", help="是否使用 GPU 加速")
return parser.parse_args()
def main():
# 解析命令行参数
args = parse_args()
# 创建实验名称
if not args.name:
gpu_tag = "gpu" if args.use_gpu else "cpu"
args.name = f"{args.dim_reduction}_{args.clustering}_{gpu_tag}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
# 初始化聚类器
analyzer = ClusterAnalyzer(
chroma_uri=args.db_path,
output_dir=args.output_dir,
experiment_name=args.name,
use_gpu=args.use_gpu
)
# 1. 加载embeddings
analyzer.load_embeddings()
# 2. 降维处理
if args.dim_reduction == "pca":
# 仅使用PCA
analyzer.reduce_dimensions(method="pca", n_components=args.pca_components)
elif args.dim_reduction == "umap":
# 仅使用UMAP
analyzer.reduce_dimensions(
method="umap",
n_components=args.umap_components,
umap_n_neighbors=args.umap_neighbors,
umap_min_dist=args.umap_min_dist
)
elif args.dim_reduction == "pca_umap":
# 两步降维: PCA + UMAP
print("\n=== 第一阶段降维(PCA) ===")
analyzer.reduce_dimensions(method="pca", n_components=args.pca_components)
print("\n=== 第二阶段降维(UMAP) ===")
analyzer.reduce_dimensions(
method="umap",
n_components=args.umap_components,
umap_n_neighbors=args.umap_neighbors,
umap_min_dist=args.umap_min_dist
)
# 3. 聚类
if args.clustering == "hdbscan":
print("\n=== HDBSCAN聚类 ===")
analyzer.cluster_hdbscan(
min_cluster_size=args.hdbscan_min_cluster_size,
min_samples=args.hdbscan_min_samples
)
elif args.clustering == "optics":
print("\n=== OPTICS聚类 ===")
analyzer.cluster_optics(
min_samples=args.optics_min_samples,
max_eps=args.optics_max_eps
)
elif args.clustering == "kmeans":
if args.kmeans_clusters > 0:
# 使用指定的K值
print(f"\n=== K-means聚类 (K={args.kmeans_clusters}) ===")
analyzer.cluster_kmeans(n_clusters=args.kmeans_clusters)
else:
# 自动寻找最佳K值
print("\n=== 寻找最佳K值 ===")
k_range = range(args.kmeans_min_k, args.kmeans_max_k + 1, args.kmeans_step)
best_k = analyzer.find_optimal_k(k_range)
print(f"最佳聚类数量: {best_k}")
print("\n=== K-means聚类 (最佳K) ===")
analyzer.cluster_kmeans(n_clusters=best_k)
# 4. 可视化结果 (如果降维到了2维)
if args.umap_components == 2 or (args.dim_reduction == "pca" and args.pca_components == 2):
analyzer.visualize_clusters(f"{args.clustering.upper()} Clustering Results")
# 5. 保存实验结果
analyzer.save_results()
if __name__ == "__main__":
main()
|