File size: 2,083 Bytes
805eacf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
385c947
 
f3c5f78
 
 
805eacf
 
 
385c947
 
 
805eacf
 
 
 
 
 
 
14be80f
 
 
 
805eacf
 
 
 
 
 
 
 
 
 
 
 
 
 
f3c5f78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
805eacf
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
language:
- sl
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
model-index:
- name: Whisper Small Sl - samolego
  results: []
---


# Whisper Small Sl - samolego

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the
ASR database [ARTUR 1.0 (audio) dataset](https://www.clarin.si/repository/xmlui/handle/11356/1776#). It was trained on `Artur-B-brani` and `Artur-B-Studio`.
It achieves the following results on the evaluation set:
- Loss: 0.1226
- Wer: 11.0097

## Model description

**Both** `ggml` and `safetensors` formats are available.

If you're not familiar with ggml, I'd suggest checking out [whisper.cpp](https://github.com/ggerganov/whisper.cpp).

## Intended uses & limitations

More information needed

## Training and evaluation data

Verdonik, Darinka; et al., 2023, 
  ASR database ARTUR 1.0 (audio), Slovenian language resource repository CLARIN.SI, ISSN 2820-4042, 
  http://hdl.handle.net/11356/1776.


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0


### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.2778        | 0.07  | 500  | 0.2748          | 23.0421 |
| 0.2009        | 0.14  | 1000 | 0.1972          | 17.3073 |
| 0.1643        | 0.21  | 1500 | 0.1658          | 14.5195 |
| 0.1569        | 0.28  | 2000 | 0.1495          | 13.1550 |
| 0.1344        | 0.36  | 2500 | 0.1380          | 12.2945 |
| 0.1295        | 0.43  | 3000 | 0.1302          | 11.6237 |
| 0.1239        | 0.5   | 3500 | 0.1249          | 11.2128 |
| 0.1178        | 0.57  | 4000 | 0.1226          | 11.0097 |


### Framework versions

- Transformers 4.39.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.18.0
- Tokenizers 0.15.2