File size: 2,232 Bytes
59bc640 d105305 59bc640 d105305 59bc640 d105305 59bc640 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
base_model: samzirbo/mT5.en-es.pretrained
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mt5.baseline
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5.baseline
This model is a fine-tuned version of [samzirbo/mT5.en-es.pretrained](https://huggingface.co/samzirbo/mT5.en-es.pretrained) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5093
- Bleu: 38.6464
- Meteor: 0.661
- Chrf++: 60.6878
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- training_steps: 30000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Chrf++ |
|:-------------:|:------:|:-----:|:---------------:|:-------:|:------:|:-------:|
| 4.0484 | 0.3215 | 3000 | 2.1130 | 29.7312 | 0.5872 | 53.2622 |
| 2.3309 | 0.6431 | 6000 | 1.8472 | 33.4852 | 0.6209 | 56.6127 |
| 2.0987 | 0.9646 | 9000 | 1.7299 | 35.1261 | 0.6355 | 58.0524 |
| 1.9355 | 1.2862 | 12000 | 1.6594 | 36.3851 | 0.6449 | 58.9991 |
| 1.8568 | 1.6077 | 15000 | 1.5978 | 37.0844 | 0.6499 | 59.4457 |
| 1.8039 | 1.9293 | 18000 | 1.5601 | 37.7628 | 0.6562 | 60.145 |
| 1.7271 | 2.2508 | 21000 | 1.5298 | 38.1387 | 0.6572 | 60.3042 |
| 1.6984 | 2.5723 | 24000 | 1.5148 | 38.5117 | 0.66 | 60.5765 |
| 1.6846 | 2.8939 | 27000 | 1.5096 | 38.5563 | 0.6604 | 60.6276 |
| 1.6687 | 3.2154 | 30000 | 1.5093 | 38.6464 | 0.661 | 60.6878 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|