File size: 5,836 Bytes
63ac5ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---

# dssg_topicmodel_500000

This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. 
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. 

## Usage 

To use this model, please install BERTopic:

```
pip install -U bertopic
```

You can use the model as follows:

```python
from bertopic import BERTopic
topic_model = BERTopic.load("sanash43/dssg_topicmodel_500000")

topic_model.get_topic_info()
```

## Topic overview

* Number of topics: 49
* Number of training documents: 500000

<details>
  <summary>Click here for an overview of all topics.</summary>
  
  | Topic ID | Topic Keywords | Topic Frequency | Label | 
|----------|----------------|-----------------|-------| 
| 0 | the - of - to - and - in | 444110 | 0_the_of_to_and | 
| 1 | university - college - student - passed - permit | 31380 | 1_university_college_student_passed | 
| 2 | 001 - 000 - xxxxxxxxxxxx - on9998 - 8703 | 10678 | 2_001_000_xxxxxxxxxxxx_on9998 | 
| 3 | ergocentric - inc - or - services - 1231 | 3124 | 3_ergocentric_inc_or_services | 
| 4 | regular - force - labrador - newfoundland - commercial | 1590 | 4_regular_force_labrador_newfoundland | 
| 5 | seeding - hail - storm - radar - weather | 1228 | 5_seeding_hail_storm_radar | 
| 6 | 000000 - rental - 42012e12 - 5000 - 2170 | 926 | 6_000000_rental_42012e12_5000 | 
| 7 | hearing - loss - tinnitus - noise - ear | 796 | 7_hearing_loss_tinnitus_noise | 
| 8 | the - and - of - in - you | 684 | 8_the_and_of_in | 
| 9 | traduction - documents - parl - mots - tr03 | 534 | 9_traduction_documents_parl_mots | 
| 10 | mci - 24 - 1943 - 23 - inst | 517 | 10_mci_24_1943_23 | 
| 11 | cbsa - lasfc - dasile - demandeurs - total | 467 | 11_cbsa_lasfc_dasile_demandeurs | 
| 12 | wwater - burlington - laboratory - eclabbur - testing | 424 | 12_wwater_burlington_laboratory_eclabbur | 
| 13 | epoll - ou - doffres - elector - 10162 | 306 | 13_epoll_ou_doffres_elector | 
| 14 | heritage - sussex - the - residence - building | 249 | 14_heritage_sussex_the_residence | 
| 15 | greenough - daycare - wellington - consulting - october | 239 | 15_greenough_daycare_wellington_consulting | 
| 16 | tage - floor - rue - confirmed - dorchester | 228 | 16_tage_floor_rue_confirmed | 
| 17 | jeunes - youth - we - de - les | 216 | 17_jeunes_youth_we_de | 
| 18 | bnp - hartals - violence - the - that | 211 | 18_bnp_hartals_violence_the | 
| 19 | 10aig - i0aig - 10aic - ioaig - i0aic | 187 | 19_10aig_i0aig_10aic_ioaig | 
| 20 | complaints - files - case - rdims - vs | 173 | 20_complaints_files_case_rdims | 
| 21 | mckinsey - formatted - font - publishingemail - page | 165 | 21_mckinsey_formatted_font_publishingemail | 
| 22 | cerb - english - french - xxxxxxxxxxxx - rdprm | 151 | 22_cerb_english_french_xxxxxxxxxxxx | 
| 23 | aeroplane - pilot - complete - private - passed | 132 | 23_aeroplane_pilot_complete_private | 
| 24 | blue - bridge - delay - water - edt | 130 | 24_blue_bridge_delay_water | 
| 25 | dymista - nasal - fluticasone - propionate - spray | 123 | 25_dymista_nasal_fluticasone_propionate | 
| 26 | individual - wh - pied - dd - tob | 113 | 26_individual_wh_pied_dd | 
| 27 | holman - financial - 19971101 - services - ar | 80 | 27_holman_financial_19971101_services | 
| 28 | pch - anthem - c210 - senator - bill | 77 | 28_pch_anthem_c210_senator | 
| 29 | 6299 - r300 - assigned - liabilities - 21111 | 72 | 29_6299_r300_assigned_liabilities | 
| 30 | cad - registered - 000 - eur - 19112015 | 71 | 30_cad_registered_000_eur | 
| 31 | original - single - age - months - commercial | 70 | 31_original_single_age_months | 
| 32 | biden - trump - votes - wshdc - election | 57 | 32_biden_trump_votes_wshdc | 
| 33 | link - bellletstalk - mental - farmers - thefirstsixteen | 54 | 33_link_bellletstalk_mental_farmers | 
| 34 | visits - average - daily - busiest - active | 44 | 34_visits_average_daily_busiest | 
| 35 | de - laroport - dorval - mirabel - et | 41 | 35_de_laroport_dorval_mirabel | 
| 36 | undefined - null - owning - created - status | 40 | 36_undefined_null_owning_created | 
| 37 | 20190101 - treasurer - 20191231 - pastor - member | 39 | 37_20190101_treasurer_20191231_pastor | 
| 38 | 1000040908 - protak - consulting - cad - cleared | 37 | 38_1000040908_protak_consulting_cad | 
| 39 | parental - z5 - 75 - maternity - zq | 27 | 39_parental_z5_75_maternity | 
| 40 | propane - per - cost - cents - bushel | 26 | 40_propane_per_cost_cents | 
| 41 | male - haiti - female - minor - colombia | 26 | 41_male_haiti_female_minor | 
| 42 | tsnrc - tsmrc - sda - standard - option | 25 | 42_tsnrc_tsmrc_sda_standard | 
| 43 | stakeholders - 10072019 - 0000 - delegation - accredited | 25 | 43_stakeholders_10072019_0000_delegation | 
| 44 | meop - eoms - multilateral - observation - eom | 25 | 44_meop_eoms_multilateral_observation | 
| 45 | de - cuves - la - des - anodes | 22 | 45_de_cuves_la_des | 
| 46 | destroyed - goods - importer - customs - rh | 22 | 46_destroyed_goods_importer_customs | 
| 47 | pa - mexico - passed - female - male | 21 | 47_pa_mexico_passed_female | 
| 48 | linda - cheverie - giulia - transcripts - command | 18 | 48_linda_cheverie_giulia_transcripts |
  
</details>

## Training hyperparameters

* calculate_probabilities: False
* language: None
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: 50
* seed_topic_list: None
* top_n_words: 10
* verbose: False
* zeroshot_min_similarity: 0.7
* zeroshot_topic_list: None

## Framework versions

* Numpy: 1.26.4
* HDBSCAN: 0.8.38.post1
* UMAP: 0.5.6
* Pandas: 2.2.1
* Scikit-Learn: 1.4.0
* Sentence-transformers: 3.0.1
* Transformers: 4.43.4
* Numba: 0.60.0
* Plotly: 5.23.0
* Python: 3.9.19