--- language: - mn base_model: bayartsogt/mongolian-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-ner-demo-turshilt1 results: [] --- # roberta-base-ner-demo-turshilt1 This model is a fine-tuned version of [bayartsogt/mongolian-roberta-base](https://huggingface.co/bayartsogt/mongolian-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1003 - Precision: 0.8136 - Recall: 0.8747 - F1: 0.8430 - Accuracy: 0.9695 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.8083 | 0.9958 | 119 | 0.2969 | 0.4887 | 0.5017 | 0.4951 | 0.9058 | | 0.192 | 2.0 | 239 | 0.1250 | 0.7392 | 0.8056 | 0.7709 | 0.9568 | | 0.1209 | 2.9958 | 358 | 0.1057 | 0.7715 | 0.8421 | 0.8052 | 0.9632 | | 0.0955 | 4.0 | 478 | 0.0979 | 0.7868 | 0.8558 | 0.8198 | 0.9655 | | 0.0801 | 4.9958 | 597 | 0.0949 | 0.7889 | 0.8633 | 0.8244 | 0.9669 | | 0.0692 | 6.0 | 717 | 0.0951 | 0.8031 | 0.8662 | 0.8335 | 0.9679 | | 0.0617 | 6.9958 | 836 | 0.0985 | 0.8037 | 0.8671 | 0.8342 | 0.9674 | | 0.0547 | 8.0 | 956 | 0.0992 | 0.8072 | 0.8696 | 0.8373 | 0.9680 | | 0.0512 | 8.9958 | 1075 | 0.0968 | 0.8070 | 0.8727 | 0.8385 | 0.9689 | | 0.0458 | 10.0 | 1195 | 0.0976 | 0.8082 | 0.8748 | 0.8402 | 0.9691 | | 0.0437 | 10.9958 | 1314 | 0.0980 | 0.8163 | 0.8753 | 0.8447 | 0.9694 | | 0.0414 | 12.0 | 1434 | 0.0982 | 0.8146 | 0.8755 | 0.8439 | 0.9694 | | 0.0404 | 12.9958 | 1553 | 0.1002 | 0.8145 | 0.8745 | 0.8434 | 0.9695 | | 0.0382 | 14.0 | 1673 | 0.1010 | 0.8114 | 0.8735 | 0.8414 | 0.9692 | | 0.0385 | 14.9372 | 1785 | 0.1003 | 0.8136 | 0.8747 | 0.8430 | 0.9695 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1