File size: 9,690 Bytes
4ee7109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# USAGE: python process_asr_text_tokenizer.py --manifest=<path to train manifest files, seperated by commas> \
#         --data_root="<output directory>" \
#         --vocab_size=<number of tokens in vocabulary> \
#         --tokenizer=<"spe" or "wpe"> \
#         --log
# where <manifest> can be: train_clean_100, train_clean_360, train_other_500
# You can also put more than one data_set comma-separated:
# --manifest="train_clean_100,train_clean_360,train_other_500"
# or
#       python process_asr_text_tokenizer.py --data_file=<path to train text file> \
#         --data_root="<output directory>" \
#         --vocab_size=<number of tokens in vocabulary> \
#         --tokenizer=<"bpe" or "wpe"> \
#         --log
# where <manifest> can be: train_clean_100, train_clean_360, train_other_500
# You can also put more than one data_set comma-separated:
# --manifest="train_clean_100,train_clean_360,train_other_500"
#
# Args:
#   --manifest or --data_file: If your text data lies inside of an ASR manifest file,
#       then use the --manifest path. If instead the text data is inside a file with separate lines
#       corresponding to different text lines, then use --data_file.
#       In either case, you can add commas to concatenate different manifests or different data files.
#
#   --data_root: The output directory (whose subdirectories will be created if not present) where
#       the tokenizers will be placed.
#
#   --vocab_size: The size of the tokenizer vocabulary. Larger vocabularies can accommodate almost entire,
#       words but the decoder size of any model will grow proportionally.
#
#   --tokenizer: Can be either spe or wpe . spe refers to the Google sentencepiece library tokenizer.
#       wpe refers to the HuggingFace BERT Word Piece tokenizer.
#
#   --no_lower_case: When this flag is passed, it will force the tokenizer to create seperate tokens for
#       upper and lower case characters. By default, the script will turn all the text to lower case
#       before tokenization (and if upper case characters are passed during training/inference, the
#       tokenizer will emit a token equivalent to Out-Of-Vocabulary). Used primarily for the
#       English language.
#
#    --spe_type: The sentencepiece library has a few implementations of the tokenization technique, and
#       spe_type refers to these implementations. Currently supported types are unigram, bpe, char, word.
#       Defaults to bpe.
#
#   --spe_character_coverage: The sentencepiece library considers how much of the original vocabulary it
#       should cover in its "base set" of tokens (akin to the lower and upper case characters of the
#       English language). For almost all languages with small base token sets (<1000 tokens), this
#       should be kept at its default of 1.0. For languages with larger vocabularies (say Japanese,
#       Mandarin, Korean etc), the suggested value is 0.9995.
#
#   --spe_sample_size: If the dataset is too large, consider using a sampled dataset indicated by a
#       positive integer. By default, any negative value (default = -1) will use the entire dataset.
#
#   --spe_train_extremely_large_corpus: When training a sentencepiece tokenizer on very large amounts of text,
#       sometimes the tokenizer will run out of memory or wont be able to process so much data on RAM.
#       At some point you might receive the following error - "Input corpus too large, try with
#       train_extremely_large_corpus=true". If your machine has large amounts of RAM, it might still be possible
#       to build the tokenizer using the above flag. Will silently fail if it runs out of RAM.
#
#   --spe_max_sentencepiece_length: Limits the maximum length that any any SentencePiece subword can be.
#       Using this will change the subword tokens generated.
#
#   --spe_pad: Adds <pad> as special token.
#
#   --spe_bos: Adds <s> as Begining-of-Sentence special token.
#
#   --spe_eos: Adds </s> as End-of-Sentence special token.
#
#   --log: Whether the script should display log messages

import json
import logging
import os

import tokenizers

from nemo.collections.common.tokenizers.sentencepiece_tokenizer import create_spt_model


def __build_document_from_manifests(
    data_root: str, manifests: str,
):
    if ',' in manifests:
        manifests = manifests.split(',')
    else:
        manifests = [manifests]

    document_dir = os.path.join(data_root, 'text_corpus')
    if not os.path.exists(document_dir):
        os.makedirs(document_dir)

    document_path = os.path.join(document_dir, 'document.txt')

    if os.path.exists(document_path):
        logging.info('Corpus already exists at path : %s', document_path)
        return document_path

    num_lines = 0
    with open(document_path, 'w') as out_writer:
        for manifest in manifests:
            with open(manifest, 'r') as in_reader:
                for line in in_reader:
                    item = json.loads(line)
                    text = item['text']

                    out_writer.write(text + '\n')
                    out_writer.flush()

                    num_lines += 1

            logging.info(f"Finished extracting manifest : {manifest}")

        logging.info("Finished extracting all manifests ! Number of sentences : {}".format(num_lines))
    return document_path


def __process_data(
    text_path: str,
    dst_folder: str,
    vocab_size: int,
    tokenizer_type: str,
    spe_type: str,
    spe_character_coverage: float,
    spe_train_extremely_large_corpus: bool,
    spe_sample_size: int,
    spe_max_sentencepiece_length: int,
    spe_bos: bool,
    spe_eos: bool,
    spe_pad: bool,
    lower_case: bool,
):
    """
    Converts flac to wav and build manifests's json
    Args:
        text_path: source with text lines
        dst_folder: where wav files will be stored
        vocab_size: vocabular size used in encoding the text
        tokenizer_type: type of tokenization to perform - wpe or spe
        spe_type: type of tokenization model used for spe.
        spe_character_coverage: float value between 0 and 1 (as a percentage). For languages with a vast charset,
            can be < 1.0, but for all other languages, it should be set as 1.0
        spe_sample_size: int, default of -1. If positive integer is used, samples the dataset
            by given sample size.
        spe_train_extremely_large_corpus: bool. If dataset is too large, and user has sufficient RAM,
            this flag can be set to try to trained the tokenizer. Will silently fail if it runs out of RAM.
        spe_max_sentencepiece_length: Limits the maximum length of the SentencePiece subword that can be constructed.
            By default, no limit is placed.
        spe_bos: Bool flag, whether to add <s> to SentencePiece tokenizer vocabulary.
        spe_eos: Bool flag, whether to add </s> to SentencePiece tokenizer vocabulary.
        spe_pad: Bool flag, whether to add <pad> to SentencePiece tokenizer vocabulary.
        lower_case: whether to tokenize with lower case character set only (for english)

    Returns:
    """
    if tokenizer_type == 'spe':

        # Prepare directory of tokenizer
        if spe_max_sentencepiece_length > 0:
            tokenizer_dir = os.path.join(dst_folder, 'tokenizer_{}_{}_v{}_max_{}').format(
                tokenizer_type, spe_type, vocab_size, spe_max_sentencepiece_length
            )
        else:
            tokenizer_dir = os.path.join(dst_folder, 'tokenizer_{}_{}_v{}').format(
                tokenizer_type, spe_type, vocab_size
            )

        if spe_pad:
            tokenizer_dir = f'{tokenizer_dir}_pad'
        if spe_bos:
            tokenizer_dir = f'{tokenizer_dir}_bos'
        if spe_eos:
            tokenizer_dir = f'{tokenizer_dir}_eos'

        if not os.path.exists(tokenizer_dir):
            os.makedirs(tokenizer_dir)

        if os.path.exists(os.path.join(tokenizer_dir, 'tokenizer.model')):
            logging.warning("Model file already exists, overriding old model file !")
            os.remove(os.path.join(tokenizer_dir, 'tokenizer.model'))

        # Build tokenizer
        tokenizer_path, vocab_path = create_spt_model(
            data_file=text_path,
            vocab_size=vocab_size,
            sample_size=spe_sample_size,
            do_lower_case=lower_case,
            output_dir=tokenizer_dir,
            tokenizer_type=spe_type,
            character_coverage=spe_character_coverage,
            train_extremely_large_corpus=spe_train_extremely_large_corpus,
            max_sentencepiece_length=spe_max_sentencepiece_length,
            bos=spe_bos,
            eos=spe_eos,
            pad=spe_pad,
        )

    else:
        tokenizer_dir = os.path.join(dst_folder, 'tokenizer_{}_v{}').format(tokenizer_type, vocab_size)

        if not os.path.exists(tokenizer_dir):
            os.makedirs(tokenizer_dir)

        tokenizer = tokenizers.BertWordPieceTokenizer(lowercase=lower_case)

        tokenizer.train(text_path, vocab_size=vocab_size)
        tokenizer.save_model(tokenizer_dir)

    return tokenizer_dir