|
command: |
|
- python3 |
|
- ${program} |
|
- --use_auth_token |
|
- --group_by_length |
|
- --overwrite_output_dir |
|
- --fp16 |
|
- --do_lower_case |
|
- --do_eval |
|
- --do_train |
|
- --fuse_loss_wer |
|
- ${args} |
|
method: random |
|
metric: |
|
goal: minimize |
|
name: eval/wer |
|
parameters: |
|
config_path: |
|
value: conf/conformer_transducer_bpe_xlarge.yaml |
|
dataset_config_name: |
|
value: release3 |
|
dataset_name: |
|
value: LIUM/tedlium |
|
eval_split_name: |
|
value: validation |
|
evaluation_strategy: |
|
value: steps |
|
eval_steps: |
|
value: 2000 |
|
fused_batch_size: |
|
value: 8 |
|
learning_rate: |
|
values: |
|
- 1e-1 |
|
- 3e-2 |
|
- 1e-2 |
|
- 3e-3 |
|
- 1e-3 |
|
- 3e-4 |
|
- 1e-4 |
|
logging_steps: |
|
value: 25 |
|
model_name_or_path: |
|
value: stt_en_conformer_transducer_xlarge |
|
max_steps: |
|
value: 8000 |
|
output_dir: |
|
value: ./sweep_output_dir |
|
per_device_eval_batch_size: |
|
value: 4 |
|
per_device_train_batch_size: |
|
value: 8 |
|
preprocessing_num_workers: |
|
value: 4 |
|
save_strategy: |
|
value: "no" |
|
tokenizer_path: |
|
value: tokenizer |
|
train_split_name: |
|
value: train |
|
vocab_size: |
|
value: 1024 |
|
warmup_steps: |
|
value: 500 |
|
wandb_project: |
|
value: rnnt-debug-tedlium |
|
freeze_encoder: |
|
values: |
|
- true |
|
- false |
|
add_adapter: |
|
values: |
|
- true |
|
- false |
|
unfreeze_encoder: |
|
values: |
|
- true |
|
- false |
|
length_column_name: |
|
value: input_lengths |
|
program: run_speech_recognition_rnnt.py |
|
project: rnnt-debug-tedlium |