#!/usr/bin/env bash CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_rnnt.py \ --config_path="conf/conformer_transducer_bpe_xlarge.yaml" \ --model_name_or_path="stt_en_conformer_transducer_xlarge" \ --dataset_name="librispeech_asr" \ --tokenizer_path="tokenizer" \ --vocab_size="1024" \ --num_train_epochs="2.84" \ --dataset_config_name="all" \ --train_split_name="train.clean.100+train.clean.360+train.other.500" \ --eval_split_name="validation.clean" \ --test_split_name="test.clean+test.other" \ --text_column_name="text" \ --output_dir="./conformer-transducer-xl-ls-960h" \ --run_name="rnnt-ls-960h-baseline" \ --wandb_project="rnnt" \ --per_device_train_batch_size="8" \ --per_device_eval_batch_size="4" \ --logging_steps="50" \ --learning_rate="1e-4" \ --warmup_steps="500" \ --save_strategy="steps" \ --save_steps="20000" \ --evaluation_strategy="steps" \ --eval_steps="20000" \ --report_to="wandb" \ --preprocessing_num_workers="4" \ --fused_batch_size="8" \ --length_column_name="input_lengths" \ --fuse_loss_wer \ --group_by_length \ --overwrite_output_dir \ --do_lower_case \ --do_train \ --do_eval \ --do_predict \ --push_to_hub \ --use_auth_token