command: - python3 - ${program} - --use_auth_token - --group_by_length - --overwrite_output_dir - --fp16 - --do_lower_case - --do_eval - --do_train - --fuse_loss_wer - ${args} method: random metric: goal: minimize name: eval/wer parameters: config_path: value: conf/conformer_transducer_bpe_xlarge.yaml dataset_config_name: value: release3 dataset_name: value: LIUM/tedlium eval_split_name: value: validation evaluation_strategy: value: steps eval_steps: value: 2000 fused_batch_size: value: 8 learning_rate: values: - 1e-1 - 3e-2 - 1e-2 - 3e-3 - 1e-3 - 3e-4 - 1e-4 logging_steps: value: 25 model_name_or_path: value: stt_en_conformer_transducer_xlarge max_steps: value: 8000 output_dir: value: ./sweep_output_dir per_device_eval_batch_size: value: 4 per_device_train_batch_size: value: 8 preprocessing_num_workers: value: 4 save_strategy: value: "no" tokenizer_path: value: tokenizer train_split_name: value: train vocab_size: value: 1024 warmup_steps: value: 500 wandb_project: value: rnnt-debug-tedlium freeze_encoder: values: - true - false add_adapter: values: - true - false unfreeze_encoder: values: - true - false length_column_name: value: input_lengths program: run_speech_recognition_rnnt.py project: rnnt-debug-tedlium