|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Training langauge models Whisper model for conditional language modelling tasks via teacher-student distillation. |
|
""" |
|
|
|
|
|
import logging |
|
import math |
|
import os |
|
import re |
|
import shutil |
|
import sys |
|
import time |
|
from dataclasses import dataclass, field |
|
from functools import partial |
|
from pathlib import Path |
|
from typing import Dict, List, Optional, Union |
|
|
|
import datasets |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import transformers |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from datasets import ( |
|
Dataset, |
|
DatasetDict, |
|
IterableDataset, |
|
IterableDatasetDict, |
|
concatenate_datasets, |
|
interleave_datasets, |
|
load_dataset, |
|
) |
|
from huggingface_hub import create_repo, get_full_repo_name, upload_folder |
|
from peft import LoraConfig, get_peft_model |
|
from torch.utils.data import DataLoader |
|
from tqdm import tqdm |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
BatchEncoding, |
|
BitsAndBytesConfig, |
|
HfArgumentParser, |
|
PreTrainedTokenizerBase, |
|
Seq2SeqTrainingArguments, |
|
get_scheduler, |
|
set_seed, |
|
) |
|
from transformers.utils import check_min_version |
|
from transformers.utils.versions import require_version |
|
|
|
|
|
|
|
check_min_version("4.34.0.dev0") |
|
|
|
require_version("datasets>=2.14.6", "To fix: `pip install --upgrade datasets`") |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to distill from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained Whisper model or model identifier from huggingface.co/models"} |
|
) |
|
teacher_model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained teacher model or model identifier from huggingface.co/models"} |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Pretrained config name or path if not the same as model_name"}, |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}, |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, |
|
) |
|
subfolder: str = field( |
|
default="", |
|
metadata={ |
|
"help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can" |
|
"specify the folder name here." |
|
}, |
|
) |
|
token: str = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " |
|
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)." |
|
) |
|
}, |
|
) |
|
attn_implementation: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"Which attention implementation to use in the encoder and decoder attention layers. Can be one of:\n" |
|
"1. `eager` or `None`: default Transformers attention implementation.\n" |
|
"2. `sdpa`: Flash Attention through PyTorch SDPA. Requires `torch>=2.1`. Recommended for hardware where Flash Attention 2 is not supported, e.g. Turing GPUs, (T4, RTX 2080).\n" |
|
"3. `flash_attn_2`: Flash Attention 2 through the Flash Attention package https://github.com/Dao-AILab/flash-attention. **Always** recommended on supported hardware (Ampere, Ada, or Hopper GPUs, e.g., A100, RTX 3090, RTX 4090, H100)." |
|
) |
|
}, |
|
) |
|
load_teacher_in_8bit: bool = field(default=False, metadata={"help": "Use 8 bit precision for the teacher model."}) |
|
load_teacher_in_4bit: bool = field(default=False, metadata={"help": "Use 4 bit precision for the teacher model."}) |
|
load_student_in_8bit: bool = field(default=False, metadata={"help": "Use 8 bit precision for the student model."}) |
|
load_student_in_4bit: bool = field(default=False, metadata={"help": "Use 4 bit precision for the student model."}) |
|
bnb_4bit_quant_type: Optional[str] = field( |
|
default="nf4", metadata={"help": "Quantization type if the teacher is quantized (fp4 or nf4)"} |
|
) |
|
use_bnb_nested_quant: bool = field(default=False, metadata={"help": "Whether or not to use nested quantization."}) |
|
lora_r: Optional[int] = field( |
|
default=16, |
|
metadata={"help": "LoRA R value."}, |
|
) |
|
lora_alpha: Optional[int] = field( |
|
default=32, |
|
metadata={"help": "LoRA alpha."}, |
|
) |
|
lora_dropout: Optional[float] = field( |
|
default=0.05, |
|
metadata={"help": "LoRA dropout."}, |
|
) |
|
lora_target_modules: Optional[List[str]] = field( |
|
default=None, |
|
metadata={"help": "LoRA target modules."}, |
|
) |
|
lora_modules_to_save: Optional[List[str]] = field( |
|
default=None, |
|
metadata={"help": "Model layers to unfreeze & train"}, |
|
) |
|
instruction_model: Optional[bool] = field( |
|
default=None, |
|
metadata={"help": "Whether or not the pre-trained model is instruction tuned"}, |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
train_dataset_name: List[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "The name of the training dataset to use (via the datasets library). Load and combine " |
|
"multiple datasets by separating dataset ids by a '+' symbol. For example, to load LibriSpeech " |
|
"and Common Voice, set `train_dataset_name='librispeech_asr+common_voice'`." |
|
}, |
|
) |
|
train_dataset_config_name: Optional[List[str]] = field( |
|
default=None, |
|
metadata={ |
|
"help": "The configuration name of the training dataset to use (via the datasets library). Load and combine " |
|
"multiple datasets by separating dataset configs by a '+' symbol. Note that the order of the configs should " |
|
"match the order of the datasets." |
|
}, |
|
) |
|
train_dataset_samples: Optional[List[str]] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Number of samples in each dataset when loading multiple datasets with streaming mode. " |
|
"Not required when using one dataset or non-streaming mode. The sample values provide the sampling " |
|
"probability for each dataset. Setting them equal to the number of sample values ensures that every " |
|
"sample from every dataset is used once per epoch." |
|
}, |
|
) |
|
eval_dataset_name: Optional[List[str]] = field( |
|
default=None, |
|
metadata={ |
|
"help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training " |
|
"dataset name if unspecified. Load multiple evaluation datasets by separating dataset " |
|
"ids by a '+' symbol." |
|
}, |
|
) |
|
eval_dataset_config_name: Optional[List[str]] = field( |
|
default=None, |
|
metadata={ |
|
"help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the " |
|
"training dataset config name if unspecified." |
|
}, |
|
) |
|
dataset_cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Path to cache directory for saving and loading datasets"}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, |
|
metadata={"help": "Overwrite the cached training and evaluation sets"}, |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing if using non-streaming mode."}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this value if set." |
|
) |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this value if set." |
|
) |
|
}, |
|
) |
|
text_column_name: str = field( |
|
default=None, |
|
metadata={"help": "The name of the dataset column containing the generated text data in the training set."}, |
|
) |
|
prompt_column_name: str = field( |
|
default=None, |
|
metadata={"help": "The name of the dataset column containing the prompt data. Defaults to 'prompt'"}, |
|
) |
|
eval_text_column_name: str = field( |
|
default=None, |
|
metadata={"help": "The name of the dataset column containing the generated text data in the evaluation set."}, |
|
) |
|
eval_prompt_column_name: str = field( |
|
default=None, |
|
metadata={"help": "The name of the dataset column containing the prompt data in the evaluation set."}, |
|
) |
|
max_label_length: int = field( |
|
default=2048, |
|
metadata={"help": "Truncate target labels that are longer `max_label_length` tokens."}, |
|
) |
|
pad_target_to_multiple_of: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"If set will pad the target sequence to a multiple of the provided value. This is important to " |
|
"avoid triggering recompilations when using torch compile. If unspecified, will default to padding " |
|
"the targets to max length." |
|
) |
|
}, |
|
) |
|
preprocessing_only: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to only do data preprocessing and skip training. This is especially useful when data " |
|
"preprocessing errors out in distributed training due to timeout. In this case, one should run the " |
|
"preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets " |
|
"can consequently be loaded in distributed training" |
|
) |
|
}, |
|
) |
|
train_split_name: Optional[List[str]] = field( |
|
default=lambda: ["train"], |
|
metadata={ |
|
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" |
|
}, |
|
) |
|
eval_split_name: Optional[List[str]] = field( |
|
default=lambda: ["validation"], |
|
metadata={ |
|
"help": ( |
|
"The name of the evaluation data set split to use (via the datasets library). Defaults to 'validation'" |
|
) |
|
}, |
|
) |
|
streaming: bool = field( |
|
default=False, |
|
metadata={"help": "Whether to use Datasets' streaming mode to load and pre-process the data."}, |
|
) |
|
wandb_project: str = field( |
|
default="distil-mixtral", |
|
metadata={"help": "The name of the wandb project."}, |
|
) |
|
|
|
|
|
@dataclass |
|
class DistillationTrainingArguments(Seq2SeqTrainingArguments): |
|
freeze_lm_head: Optional[bool] = field( |
|
default=False, metadata={"help": "Whether to freeze the LM head of the student model."} |
|
) |
|
temperature: Optional[float] = field( |
|
default=2.0, metadata={"help": "Temperature to anneal the logits when computing the softmax."} |
|
) |
|
kl_weight: Optional[float] = field( |
|
default=1.0, |
|
metadata={ |
|
"help": ( |
|
"Weighting assigned to the MSE loss in the KD formulation. MSE loss is " |
|
"computed between the teacher-student hidden states and attentions." |
|
) |
|
}, |
|
) |
|
output_router_logits: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether or not to return the router logits in the forward pass. Enabling this will " |
|
"also configure the model to compute the auxiliary loss." |
|
}, |
|
) |
|
dtype: Optional[str] = field( |
|
default="float32", |
|
metadata={ |
|
"help": ( |
|
"The data type (dtype) in which to run training. One of `float32` (full-precision), " |
|
"`float16` or `bfloat16` (both half-precision)." |
|
) |
|
}, |
|
) |
|
|
|
|
|
@dataclass |
|
class DataCollatorCausalLMWithPadding: |
|
""" |
|
Data collator that will dynamically pad the inputs received. |
|
Args: |
|
tokenizer ([`PreTrainedTokenizer`]) |
|
The tokenizer used for tokenizing the data. |
|
target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): |
|
Select a strategy to pad the returned target sequences (according to the model's padding side and padding index). |
|
See above for details. |
|
max_target_length (:obj:`int`, `optional`): |
|
Maximum length of the ``labels`` of the returned list and optionally padding length (see above). |
|
""" |
|
|
|
tokenizer: PreTrainedTokenizerBase |
|
target_padding: Union[bool, str] = "max_length" |
|
max_target_length: Optional[int] = None |
|
|
|
def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> BatchEncoding: |
|
|
|
label_features = {"input_ids": [feature["labels"] for feature in features]} |
|
prompt_lengths = [feature["prompt_length"] for feature in features] |
|
|
|
batch = self.tokenizer.pad( |
|
label_features, |
|
max_length=self.max_target_length, |
|
padding=self.target_padding, |
|
return_tensors="pt", |
|
) |
|
|
|
labels_mask = batch["attention_mask"] |
|
|
|
|
|
for idx in range(len(prompt_lengths)): |
|
labels_mask[idx, : prompt_lengths[idx]] = 0 |
|
|
|
|
|
labels = batch["input_ids"].masked_fill(labels_mask.ne(1), -100) |
|
|
|
batch["labels"] = labels |
|
|
|
return batch |
|
|
|
|
|
def log_metric( |
|
accelerator, |
|
metrics: Dict, |
|
train_time: float, |
|
step: int, |
|
epoch: int, |
|
learning_rate: float = None, |
|
prefix: str = "train", |
|
): |
|
"""Helper function to log all training/evaluation metrics with the correct prefixes and styling.""" |
|
log_metrics = {} |
|
for k, v in metrics.items(): |
|
log_metrics[f"{prefix}/{k}"] = v |
|
log_metrics[f"{prefix}/time"] = train_time |
|
log_metrics[f"{prefix}/epoch"] = epoch |
|
if learning_rate is not None: |
|
log_metrics[f"{prefix}/learning_rate"] = learning_rate |
|
accelerator.log(log_metrics, step=step) |
|
|
|
|
|
def log_pred( |
|
accelerator, |
|
pred_str: List[str], |
|
label_str: List[str], |
|
step: int, |
|
epoch: int, |
|
evaluation_strategy: str, |
|
prefix: str = "eval", |
|
num_lines: int = 200000, |
|
): |
|
"""Helper function to log target/predicted transcriptions to weights and biases (wandb).""" |
|
if accelerator.is_main_process: |
|
wandb_tracker = accelerator.get_tracker("wandb") |
|
|
|
cur_step_pretty = f"{int(step // 1000)}k" if step > 1000 else step |
|
prefix_pretty = prefix.replace("/", "-") |
|
|
|
if evaluation_strategy == "epoch": |
|
table_name = f"predictions/{prefix_pretty}-epoch-{epoch}" |
|
else: |
|
table_name = f"predictions/{prefix_pretty}-step-{cur_step_pretty}" |
|
|
|
|
|
str_data = [[label_str[i], pred_str[i]] for i in range(len(pred_str))] |
|
|
|
wandb_tracker.log_table( |
|
table_name=table_name, |
|
columns=["Target", "Pred"], |
|
data=str_data[:num_lines], |
|
step=step, |
|
) |
|
|
|
|
|
def convert_dataset_str_to_list( |
|
dataset_names, |
|
dataset_config_names, |
|
splits=None, |
|
text_column_names=None, |
|
prompt_column_names=None, |
|
dataset_samples=None, |
|
default_split="train", |
|
) -> List[Dict]: |
|
""" |
|
Given three lists of dataset names, configs and splits, this function groups the corresponding |
|
names/configs/splits. Each dataset is assigned a unique dictionary with these metadata values, and the |
|
function returns a list of dictionaries, one for each dataset. |
|
""" |
|
if isinstance(dataset_names, str): |
|
dataset_names = [dataset_names] |
|
splits = [splits] if splits else None |
|
text_column_names = [text_column_names] if text_column_names else None |
|
prompt_column_names = [prompt_column_names] if prompt_column_names else None |
|
if isinstance(dataset_config_names, str): |
|
dataset_config_names = [dataset_config_names] |
|
|
|
if len(dataset_names) == 1 and len(dataset_config_names) > 1: |
|
dataset_names = len(dataset_config_names) * dataset_names |
|
|
|
if isinstance(splits, list) and len(splits) == 1 and len(dataset_config_names) > 1: |
|
splits = len(dataset_config_names) * splits |
|
|
|
|
|
if dataset_config_names is not None and len(dataset_names) != len(dataset_config_names): |
|
raise ValueError( |
|
f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and" |
|
f" {len(dataset_config_names)} configs." |
|
) |
|
|
|
if splits is not None and len(splits) != len(dataset_names): |
|
raise ValueError( |
|
f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits." |
|
) |
|
|
|
if text_column_names is not None and len(text_column_names) != len(dataset_names): |
|
raise ValueError( |
|
f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and" |
|
f" {len(text_column_names)} text column names." |
|
) |
|
|
|
if prompt_column_names is not None and len(prompt_column_names) != len(dataset_names): |
|
raise ValueError( |
|
f"Ensure one prompt column name is passed for each dataset, got {len(dataset_names)} datasets and" |
|
f" {len(prompt_column_names)} prompt column names." |
|
) |
|
|
|
if dataset_samples is not None: |
|
if len(dataset_samples) != len(dataset_names): |
|
raise ValueError( |
|
f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and " |
|
f"{len(dataset_samples)} samples." |
|
) |
|
dataset_samples = [float(ds_sample) for ds_sample in dataset_samples] |
|
else: |
|
dataset_samples = [None] * len(dataset_names) |
|
|
|
dataset_config_names = ( |
|
dataset_config_names if dataset_config_names is not None else ["default" for _ in range(len(dataset_names))] |
|
) |
|
text_column_names = ( |
|
text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))] |
|
) |
|
prompt_column_names = ( |
|
prompt_column_names if prompt_column_names is not None else ["prompt" for _ in range(len(dataset_names))] |
|
) |
|
splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))] |
|
|
|
dataset_names_dict = [] |
|
for i, ds_name in enumerate(dataset_names): |
|
dataset_names_dict.append( |
|
{ |
|
"name": ds_name, |
|
"config": dataset_config_names[i], |
|
"split": splits[i], |
|
"text_column_name": text_column_names[i], |
|
"prompt_column_name": prompt_column_names[i], |
|
"samples": dataset_samples[i], |
|
} |
|
) |
|
return dataset_names_dict |
|
|
|
|
|
def load_multiple_datasets( |
|
dataset_names: Union[List, str], |
|
dataset_config_names: Union[List, str], |
|
splits: Optional[Union[List, str]] = None, |
|
text_column_names: Optional[List] = None, |
|
prompt_column_names: Optional[List] = None, |
|
stopping_strategy: Optional[str] = "first_exhausted", |
|
dataset_samples: Optional[Union[List, np.array]] = None, |
|
streaming: Optional[bool] = False, |
|
seed: Optional[int] = None, |
|
accelerator: Optional[Accelerator] = None, |
|
**kwargs, |
|
) -> Union[Dataset, IterableDataset]: |
|
dataset_names_dict = convert_dataset_str_to_list( |
|
dataset_names, dataset_config_names, splits, text_column_names, prompt_column_names, dataset_samples |
|
) |
|
|
|
if dataset_samples is not None: |
|
dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict] |
|
probabilities = np.array(dataset_samples) / np.sum(dataset_samples) |
|
else: |
|
probabilities = None |
|
|
|
all_datasets = [] |
|
|
|
for dataset_dict in tqdm( |
|
dataset_names_dict, |
|
desc="Combining datasets...", |
|
disable=not accelerator.is_main_process, |
|
): |
|
dataset = load_dataset( |
|
dataset_dict["name"], |
|
dataset_dict["config"], |
|
split=dataset_dict["split"], |
|
streaming=streaming, |
|
**kwargs, |
|
) |
|
|
|
columns_to_keep = {"text"} |
|
dataset_features = dataset.features.keys() |
|
|
|
if dataset_dict["text_column_name"] not in dataset_features: |
|
raise ValueError( |
|
f"Text column name {dataset_dict['text_column_name']} not found in dataset" |
|
f" '{dataset_dict['name']}'. Make sure to set `--text_column_name` to the" |
|
f" correct text column - one of {', '.join(dataset_features)}." |
|
) |
|
|
|
|
|
if dataset_dict["text_column_name"] != "text": |
|
dataset = dataset.rename_column(dataset_dict["text_column_name"], "text") |
|
|
|
|
|
if dataset_dict["prompt_column_name"] is not None: |
|
if dataset_dict["prompt_column_name"] not in dataset_features: |
|
raise ValueError( |
|
f"Prompt column name {dataset_dict['prompt_column_name']} not found in dataset" |
|
f" '{dataset_dict['name']}'. Make sure to set `--prompt_column_name` to the" |
|
f" correct prompt column - one of {', '.join(dataset_features)}." |
|
) |
|
elif dataset_dict["prompt_column_name"] != "prompt": |
|
dataset = dataset.rename_column(dataset_dict["prompt_column_name"], "prompt") |
|
columns_to_keep.add("prompt") |
|
|
|
dataset = dataset.remove_columns(set(dataset_features - columns_to_keep)) |
|
all_datasets.append(dataset) |
|
|
|
if len(all_datasets) == 1: |
|
|
|
return all_datasets[0] |
|
|
|
if streaming: |
|
interleaved_dataset = interleave_datasets( |
|
all_datasets, |
|
stopping_strategy=stopping_strategy, |
|
probabilities=probabilities, |
|
seed=seed, |
|
) |
|
else: |
|
interleaved_dataset = concatenate_datasets(all_datasets) |
|
|
|
return interleaved_dataset |
|
|
|
|
|
def sorted_checkpoints(output_dir=None, checkpoint_prefix="checkpoint") -> List[str]: |
|
"""Helper function to sort saved checkpoints from oldest to newest.""" |
|
ordering_and_checkpoint_path = [] |
|
|
|
glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)] |
|
|
|
for path in glob_checkpoints: |
|
regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path) |
|
if regex_match is not None and regex_match.groups() is not None: |
|
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path)) |
|
|
|
checkpoints_sorted = sorted(ordering_and_checkpoint_path) |
|
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted] |
|
return checkpoints_sorted |
|
|
|
|
|
def rotate_checkpoints(save_total_limit=None, output_dir=None, checkpoint_prefix="checkpoint") -> None: |
|
"""Helper function to delete old checkpoints.""" |
|
if save_total_limit is None or save_total_limit <= 0: |
|
return |
|
|
|
checkpoints_sorted = sorted_checkpoints(output_dir=output_dir, checkpoint_prefix=checkpoint_prefix) |
|
if len(checkpoints_sorted) <= save_total_limit: |
|
return |
|
|
|
number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit) |
|
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete] |
|
for checkpoint in checkpoints_to_be_deleted: |
|
logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit") |
|
shutil.rmtree(checkpoint, ignore_errors=True) |
|
|
|
|
|
_RE_CHECKPOINT = re.compile(r"^checkpoint-(\d+)-epoch-(\d+)$") |
|
|
|
|
|
def get_last_checkpoint(folder): |
|
content = os.listdir(folder) |
|
checkpoints = [ |
|
path |
|
for path in content |
|
if _RE_CHECKPOINT.search(path) is not None and os.path.isdir(os.path.join(folder, path)) |
|
] |
|
if len(checkpoints) == 0: |
|
return |
|
return os.path.join(folder, max(checkpoints, key=lambda x: int(_RE_CHECKPOINT.search(x).groups()[0]))) |
|
|
|
|
|
def get_parameter_names(model, forbidden_layer_types, forbidden_module=None): |
|
""" |
|
Returns the names of the model parameters that are not inside a forbidden layer or forbidden module. |
|
Can be used to get a subset of parameter names for decay masks, or to exclude parameters from an optimiser |
|
(e.g. if the module is frozen). |
|
""" |
|
result = [] |
|
for name, child in model.named_children(): |
|
result += [ |
|
f"{name}.{n}" |
|
for n in get_parameter_names(child, forbidden_layer_types, forbidden_module) |
|
if not ( |
|
isinstance(child, tuple(forbidden_layer_types)) |
|
or (child in tuple(forbidden_module) if forbidden_module is not None else False) |
|
) |
|
] |
|
|
|
result += list(model._parameters.keys()) |
|
return result |
|
|
|
|
|
def get_quantization_config( |
|
model_args: ModelArguments, torch_dtype: torch.dtype |
|
) -> tuple[BitsAndBytesConfig | None, BitsAndBytesConfig | None]: |
|
if model_args.load_teacher_in_4bit: |
|
quantization_config_teacher = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch_dtype, |
|
bnb_4bit_quant_type=model_args.bnb_4bit_quant_type, |
|
bnb_4bit_use_double_quant=model_args.use_bnb_nested_quant, |
|
) |
|
elif model_args.load_teacher_in_8bit: |
|
quantization_config_teacher = BitsAndBytesConfig(load_in_8bit=True) |
|
else: |
|
quantization_config_teacher = None |
|
|
|
if model_args.load_student_in_4bit: |
|
quantization_config_student = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch_dtype, |
|
bnb_4bit_quant_type=model_args.bnb_4bit_quant_type, |
|
bnb_4bit_use_double_quant=model_args.use_bnb_nested_quant, |
|
) |
|
elif model_args.load_student_in_8bit: |
|
quantization_config_student = BitsAndBytesConfig(load_in_8bit=True) |
|
else: |
|
quantization_config_student = None |
|
|
|
return quantization_config_teacher, quantization_config_student |
|
|
|
|
|
def main(): |
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, DistillationTrainingArguments)) |
|
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
elif len(sys.argv) == 2 and sys.argv[1].endswith(".yaml"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_yaml_file(yaml_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
|
|
|
|
|
|
|
|
if training_args.dtype == "float16": |
|
mixed_precision = "fp16" |
|
teacher_dtype = torch.float16 |
|
elif training_args.dtype == "bfloat16": |
|
mixed_precision = "bf16" |
|
teacher_dtype = torch.bfloat16 |
|
else: |
|
mixed_precision = "no" |
|
teacher_dtype = torch.float32 |
|
|
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=training_args.gradient_accumulation_steps, |
|
mixed_precision=mixed_precision, |
|
log_with=training_args.report_to, |
|
project_dir=training_args.output_dir, |
|
) |
|
|
|
accelerator.init_trackers(project_name=data_args.wandb_project) |
|
|
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
|
|
logger.warning( |
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " |
|
f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" |
|
) |
|
|
|
|
|
if accelerator.is_local_main_process: |
|
datasets.utils.logging.set_verbosity_warning() |
|
transformers.utils.logging.set_verbosity_info() |
|
else: |
|
datasets.utils.logging.set_verbosity_error() |
|
transformers.utils.logging.set_verbosity_error() |
|
logger.info("Training/evaluation parameters %s", training_args) |
|
|
|
|
|
last_checkpoint = None |
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: |
|
last_checkpoint = get_last_checkpoint(training_args.output_dir) |
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. " |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: |
|
logger.info( |
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " |
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." |
|
) |
|
|
|
|
|
if accelerator.is_main_process: |
|
if training_args.push_to_hub: |
|
if training_args.hub_model_id is None: |
|
repo_name = get_full_repo_name( |
|
Path(training_args.output_dir).absolute().name, |
|
token=training_args.hub_token, |
|
) |
|
else: |
|
repo_name = training_args.hub_model_id |
|
create_repo(repo_name, exist_ok=True, token=training_args.hub_token) |
|
|
|
with open(os.path.join(training_args.output_dir, ".gitignore"), "w+") as gitignore: |
|
if "wandb" not in gitignore: |
|
gitignore.write("wandb\n") |
|
elif training_args.output_dir is not None: |
|
os.makedirs(training_args.output_dir, exist_ok=True) |
|
accelerator.wait_for_everyone() |
|
|
|
|
|
raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() |
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
if training_args.do_train: |
|
raw_datasets["train"] = load_multiple_datasets( |
|
data_args.train_dataset_name, |
|
data_args.train_dataset_config_name, |
|
splits=data_args.train_split_name, |
|
text_column_names=data_args.text_column_name, |
|
prompt_column_names=data_args.prompt_column_name, |
|
streaming=data_args.streaming, |
|
dataset_samples=data_args.train_dataset_samples, |
|
seed=training_args.seed, |
|
accelerator=accelerator, |
|
cache_dir=data_args.dataset_cache_dir, |
|
token=model_args.token, |
|
) |
|
raw_datasets_train_features = set(raw_datasets["train"].features.keys()) |
|
|
|
if training_args.do_eval: |
|
dataset_names_dict = convert_dataset_str_to_list( |
|
data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name, |
|
( |
|
data_args.eval_dataset_config_name |
|
if data_args.eval_dataset_config_name |
|
else data_args.train_dataset_config_name |
|
), |
|
splits=data_args.eval_split_name, |
|
text_column_names=data_args.eval_text_column_name, |
|
prompt_column_names=data_args.eval_prompt_column_name, |
|
) |
|
all_eval_splits = [] |
|
if len(dataset_names_dict) == 1: |
|
|
|
dataset_dict = dataset_names_dict[0] |
|
all_eval_splits.append("eval") |
|
raw_datasets["eval"] = load_dataset( |
|
dataset_dict["name"], |
|
dataset_dict["config"], |
|
split=dataset_dict["split"], |
|
cache_dir=data_args.dataset_cache_dir, |
|
token=model_args.token, |
|
streaming=data_args.streaming, |
|
) |
|
if dataset_dict["text_column_name"] != "text": |
|
raw_datasets["eval"] = raw_datasets["eval"].rename_column(data_args.eval_text_column_name, "text") |
|
if dataset_dict["prompt_column_name"] != "prompt": |
|
raw_datasets["eval"] = raw_datasets["eval"].rename_column(data_args.eval_prompt_column_name, "prompt") |
|
else: |
|
|
|
for dataset_dict in dataset_names_dict: |
|
pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['config'].replace('.', '-')}" |
|
all_eval_splits.append(pretty_name) |
|
raw_datasets[pretty_name] = load_dataset( |
|
dataset_dict["name"], |
|
dataset_dict["config"], |
|
split=dataset_dict["split"], |
|
cache_dir=data_args.dataset_cache_dir, |
|
token=model_args.token, |
|
streaming=data_args.streaming, |
|
) |
|
|
|
if dataset_dict["text_column_name"] != "text": |
|
raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column( |
|
dataset_dict["text_column_name"], "text" |
|
) |
|
if dataset_dict["prompt_column_name"] != "prompt": |
|
raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column( |
|
dataset_dict["prompt_column_name"], "prompt" |
|
) |
|
raw_datasets[pretty_name] = raw_datasets[pretty_name].remove_columns( |
|
set(raw_datasets[pretty_name].features.keys()) - {"text", "prompt"} |
|
) |
|
|
|
if not training_args.do_train and not training_args.do_eval: |
|
raise ValueError( |
|
"Cannot not train and not do evaluation. At least one of training or evaluation has to be performed." |
|
) |
|
|
|
|
|
config = AutoConfig.from_pretrained( |
|
(model_args.config_name if model_args.config_name else model_args.model_name_or_path), |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
token=model_args.token, |
|
) |
|
if training_args.output_router_logits: |
|
config.output_router_logits = True |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
(model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path), |
|
cache_dir=model_args.cache_dir, |
|
use_fast=model_args.use_fast_tokenizer, |
|
revision=model_args.model_revision, |
|
token=model_args.token, |
|
) |
|
if tokenizer.pad_token_id is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
quantization_config_teacher, quantization_config_student = get_quantization_config( |
|
model_args, torch_dtype=teacher_dtype |
|
) |
|
|
|
|
|
|
|
teacher_model = AutoModelForCausalLM.from_pretrained( |
|
model_args.teacher_model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
token=model_args.token, |
|
low_cpu_mem_usage=True, |
|
torch_dtype=teacher_dtype, |
|
attn_implementation=model_args.attn_implementation, |
|
quantization_config=quantization_config_teacher, |
|
) |
|
|
|
student_model = AutoModelForCausalLM.from_pretrained( |
|
model_args.model_name_or_path, |
|
config=config, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
subfolder=model_args.subfolder, |
|
token=model_args.token, |
|
torch_dtype=teacher_dtype, |
|
low_cpu_mem_usage=True, |
|
attn_implementation=model_args.attn_implementation, |
|
quantization_config=quantization_config_student, |
|
) |
|
|
|
if quantization_config_student is not None: |
|
lora_config = LoraConfig( |
|
r=model_args.lora_r, |
|
lora_alpha=model_args.lora_alpha, |
|
target_modules=model_args.lora_target_modules, |
|
lora_dropout=model_args.lora_dropout, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
) |
|
student_model = get_peft_model(student_model, lora_config) |
|
|
|
if student_model.generation_config.bos_token_id is None or teacher_model.generation_config.bos_token_id is None: |
|
raise ValueError( |
|
f"Make sure that `generation_config.bos_token_id` is correctly defined for both the " |
|
f"student and teacher model. Got {student_model.generation_config.bos_token_id} for the " |
|
f"student and {teacher_model.generation_config.bos_token_id} for the teacher." |
|
) |
|
|
|
|
|
if training_args.gradient_checkpointing: |
|
student_model.gradient_checkpointing_enable() |
|
|
|
def set_trainable_parameters(module, requires_grad=False): |
|
for param in module.parameters(): |
|
param.requires_grad = requires_grad |
|
module._requires_grad = requires_grad |
|
|
|
|
|
if training_args.freeze_lm_head: |
|
set_trainable_parameters(student_model.lm_head, requires_grad=False) |
|
|
|
if training_args.gradient_checkpointing: |
|
logger.warning( |
|
"Freezing the LM head is not compatible with gradient checkpointing. Set `--gradient_checkpointing=False`, " |
|
"or un-freeze the LM head with `--freeze_lm_head=False`. Overriding gradient checkpointing to False." |
|
) |
|
|
|
student_model.generation_config.max_length = data_args.max_label_length |
|
|
|
|
|
if accelerator.is_main_process: |
|
tokenizer.save_pretrained(training_args.output_dir) |
|
|
|
config.save_pretrained(training_args.output_dir) |
|
student_model.generation_config.save_pretrained(training_args.output_dir) |
|
|
|
accelerator.wait_for_everyone() |
|
|
|
|
|
|
|
|
|
max_label_length = ( |
|
data_args.max_label_length if data_args.max_label_length is not None else config.max_length |
|
) |
|
num_workers = data_args.preprocessing_num_workers |
|
dataloader_num_workers = training_args.dataloader_num_workers |
|
prefetch_factor = training_args.dataloader_prefetch_factor |
|
eos_token_id = tokenizer.eos_token_id |
|
|
|
inst_token = "[INST] " |
|
assistant_token = " [/INST]" |
|
if model_args.instruction_model is not None: |
|
instruction_model = model_args.instruction_model |
|
else: |
|
instruction_model = "instruct" in model_args.model_name_or_path.lower() |
|
|
|
|
|
if training_args.do_train and data_args.max_train_samples is not None: |
|
raw_datasets["train"] = ( |
|
raw_datasets["train"].take(data_args.max_train_samples) |
|
if data_args.streaming |
|
else raw_datasets["train"].select(range(data_args.max_train_samples)) |
|
) |
|
|
|
if training_args.do_eval and data_args.max_eval_samples is not None: |
|
for eval_split in all_eval_splits: |
|
raw_datasets[eval_split] = ( |
|
raw_datasets[eval_split].take(data_args.max_eval_samples) |
|
if data_args.streaming |
|
else raw_datasets[eval_split].select(range(data_args.max_eval_samples)) |
|
) |
|
|
|
|
|
def prepare_datasets(example): |
|
if instruction_model: |
|
example["prompt"] = inst_token + example["prompt"].strip() + assistant_token |
|
example["labels"] = tokenizer(example["prompt"] + example["text"]).input_ids + [eos_token_id] |
|
example["prompt_length"] = len(tokenizer(example["prompt"]).input_ids) |
|
return example |
|
|
|
vectorized_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() |
|
if training_args.do_train: |
|
|
|
|
|
|
|
map_fn_train = partial( |
|
raw_datasets["train"].map, |
|
function=prepare_datasets, |
|
remove_columns=raw_datasets_train_features, |
|
) |
|
with accelerator.main_process_first(): |
|
vectorized_datasets["train"] = ( |
|
map_fn_train(num_proc=num_workers, desc="preprocess train dataset") |
|
if not data_args.streaming |
|
else map_fn_train() |
|
) |
|
if training_args.do_eval: |
|
for eval_split in all_eval_splits: |
|
raw_datasets_eval_features = list(raw_datasets[eval_split].features.keys()) |
|
map_fn_eval = partial( |
|
raw_datasets[eval_split].map, function=prepare_datasets, remove_columns=raw_datasets_eval_features |
|
) |
|
with accelerator.main_process_first(): |
|
vectorized_datasets[eval_split] = ( |
|
map_fn_eval(num_proc=num_workers, desc="preprocess eval dataset") |
|
if not data_args.streaming |
|
else map_fn_eval() |
|
) |
|
|
|
|
|
def is_labels_in_length_range(labels): |
|
return 0 < len(labels) <= max_label_length |
|
|
|
filter_by_labels_fn = partial( |
|
vectorized_datasets.filter, function=is_labels_in_length_range, input_columns=["labels"] |
|
) |
|
with accelerator.main_process_first(): |
|
vectorized_datasets = ( |
|
filter_by_labels_fn(num_proc=num_workers, desc="filtering train dataset") |
|
if not data_args.streaming |
|
else filter_by_labels_fn() |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.preprocessing_only: |
|
if data_args.streaming: |
|
raise ValueError( |
|
"When using streaming mode, dataset pre-processing is performed on the fly, hence there is no notion" |
|
"of a cached pre-processed dataset. Remove the argument `--preprocessing_only` to run pre-processing " |
|
"on the fly with streaming mode." |
|
) |
|
cache = {k: v.cache_files for k, v in vectorized_datasets.items()} |
|
logger.info(f"Data preprocessing finished. Files cached at {cache}.") |
|
return |
|
|
|
|
|
def compute_metrics(preds, labels): |
|
|
|
|
|
for idx in range(len(labels)): |
|
labels[idx][labels[idx] == -100] = tokenizer.pad_token_id |
|
pred_str = tokenizer.batch_decode(preds, skip_special_tokens=True) |
|
label_str = tokenizer.batch_decode(labels, skip_special_tokens=True) |
|
return pred_str, label_str |
|
|
|
|
|
|
|
per_device_train_batch_size = int(training_args.per_device_train_batch_size) |
|
train_batch_size = per_device_train_batch_size * accelerator.num_processes |
|
gradient_accumulation_steps = int(training_args.gradient_accumulation_steps) |
|
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) |
|
|
|
|
|
if not data_args.streaming and training_args.max_steps < 0: |
|
num_epochs = int(training_args.num_train_epochs) |
|
steps_per_epoch = len(vectorized_datasets["train"]) // (train_batch_size * gradient_accumulation_steps) |
|
total_train_steps = steps_per_epoch * num_epochs |
|
elif training_args.max_steps > 0: |
|
logger.info("max_steps is given, it will override any value given in num_train_epochs") |
|
total_train_steps = int(training_args.max_steps) |
|
if not data_args.streaming: |
|
steps_per_epoch = len(vectorized_datasets["train"]) // (train_batch_size * gradient_accumulation_steps) |
|
num_epochs = int(np.ceil(total_train_steps / steps_per_epoch)) |
|
else: |
|
|
|
num_epochs = sys.maxsize |
|
steps_per_epoch = total_train_steps |
|
else: |
|
raise ValueError("max_steps must be specified when training with a streaming (iterable) dataset") |
|
|
|
|
|
if training_args.evaluation_strategy == "epoch": |
|
eval_steps = steps_per_epoch |
|
elif training_args.eval_steps is None: |
|
logger.info( |
|
f"eval_steps is not set, evaluating at the end of {'each epoch' if not data_args.streaming else 'training'}" |
|
) |
|
eval_steps = steps_per_epoch |
|
else: |
|
eval_steps = training_args.eval_steps |
|
|
|
|
|
if training_args.save_strategy == "epoch": |
|
save_steps = steps_per_epoch |
|
elif training_args.save_strategy == "steps": |
|
save_steps = training_args.save_steps |
|
else: |
|
save_steps = sys.maxsize |
|
|
|
|
|
decay_parameters = get_parameter_names( |
|
student_model, |
|
[nn.LayerNorm], |
|
) |
|
decay_parameters = [name for name in decay_parameters if "bias" not in name] |
|
optimizer_grouped_parameters = [ |
|
{ |
|
"params": [param for name, param in student_model.named_parameters() if name in decay_parameters], |
|
"weight_decay": training_args.weight_decay, |
|
}, |
|
{ |
|
"params": [param for name, param in student_model.named_parameters() if name not in decay_parameters], |
|
"weight_decay": 0.0, |
|
}, |
|
] |
|
optimizer = torch.optim.AdamW( |
|
params=optimizer_grouped_parameters, |
|
lr=training_args.learning_rate, |
|
betas=(training_args.adam_beta1, training_args.adam_beta2), |
|
eps=training_args.adam_epsilon, |
|
) |
|
|
|
|
|
lr_scheduler = get_scheduler( |
|
name=training_args.lr_scheduler_type, |
|
optimizer=optimizer, |
|
num_warmup_steps=training_args.warmup_steps * accelerator.num_processes, |
|
num_training_steps=total_train_steps * accelerator.num_processes, |
|
) |
|
|
|
data_collator = DataCollatorCausalLMWithPadding( |
|
tokenizer=tokenizer, |
|
target_padding="max_length", |
|
max_target_length=max_label_length, |
|
) |
|
|
|
|
|
|
|
num_beams = ( |
|
training_args.generation_num_beams |
|
if training_args.generation_num_beams is not None |
|
else getattr(student_model.generation_config, "num_beams", 1) |
|
) |
|
|
|
|
|
student_model, teacher_model, optimizer, lr_scheduler = accelerator.prepare( |
|
student_model, teacher_model, optimizer, lr_scheduler |
|
) |
|
|
|
def kl_divergence(target_distribution, log_predicted_distribution, labels): |
|
kl_loss = nn.KLDivLoss(reduction="none") |
|
divergence = kl_loss(log_predicted_distribution, target_distribution) |
|
|
|
padding_mask = labels >= 0 |
|
padding_mask = padding_mask.unsqueeze(-1) |
|
divergence = divergence * padding_mask |
|
|
|
divergence = divergence.sum() / padding_mask.sum() |
|
return divergence |
|
|
|
|
|
def train_step( |
|
batch, |
|
temperature=2.0, |
|
): |
|
student_model.train() |
|
teacher_model.eval() |
|
|
|
student_outputs = student_model(**batch) |
|
with torch.no_grad(): |
|
teacher_outputs = teacher_model(**batch) |
|
|
|
|
|
ce_loss = student_outputs.loss |
|
|
|
teacher_distribution = nn.functional.softmax(teacher_outputs.logits / temperature, dim=-1) |
|
|
|
student_distribution = nn.functional.log_softmax(student_outputs.logits / temperature, dim=-1) |
|
|
|
kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"]) * temperature**2 |
|
|
|
|
|
loss = 0.8 * ce_loss + training_args.kl_weight * kl_loss |
|
metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss} |
|
return loss, metrics |
|
|
|
|
|
def eval_step(batch): |
|
student_model.eval() |
|
teacher_model.eval() |
|
|
|
with torch.no_grad(): |
|
student_outputs = student_model(**batch) |
|
teacher_outputs = teacher_model(**batch) |
|
|
|
|
|
ce_loss = student_outputs.loss |
|
|
|
|
|
student_distribution = nn.functional.log_softmax(student_outputs.logits, dim=-1) |
|
teacher_distribution = nn.functional.softmax(teacher_outputs.logits, dim=-1) |
|
|
|
kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"]) |
|
|
|
|
|
loss = 0.8 * ce_loss + training_args.kl_weight * kl_loss |
|
metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss} |
|
return metrics |
|
|
|
def generate_step(batch): |
|
student_model.eval() |
|
output_ids = accelerator.unwrap_model(student_model).generate( |
|
**batch, max_length=max_label_length, num_beams=num_beams |
|
) |
|
output_ids = accelerator.pad_across_processes(output_ids, dim=1, pad_index=tokenizer.pad_token_id) |
|
return output_ids |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {total_train_steps * train_batch_size * gradient_accumulation_steps}") |
|
if not data_args.streaming: |
|
logger.info(f" Num epochs = {num_epochs}") |
|
logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_train_batch_size}") |
|
logger.info(" Gradient accumulation steps =" f" {gradient_accumulation_steps}") |
|
logger.info( |
|
f" Total train batch size (w. parallel & distributed) = {train_batch_size * gradient_accumulation_steps}" |
|
) |
|
logger.info(f" Total optimization steps = {total_train_steps}") |
|
|
|
|
|
train_time = 0 |
|
train_start = time.time() |
|
steps_trained_progress_bar = tqdm( |
|
range(total_train_steps), desc="Train steps ... ", position=0, disable=not accelerator.is_local_main_process |
|
) |
|
continue_training = True |
|
epochs_trained = 0 |
|
cur_step = 0 |
|
|
|
checkpoint = None |
|
if training_args.resume_from_checkpoint is not None: |
|
checkpoint = training_args.resume_from_checkpoint |
|
elif last_checkpoint is not None: |
|
checkpoint = last_checkpoint |
|
|
|
if checkpoint is not None: |
|
accelerator.load_state(checkpoint) |
|
|
|
pattern = r"checkpoint-(\d+)-epoch-(\d+)" |
|
match = re.search(pattern, checkpoint) |
|
cur_step = int(match.group(1)) |
|
epochs_trained = int(match.group(2)) |
|
|
|
logger.info(" Continuing training from checkpoint, will skip to saved global_step") |
|
logger.info(f" Continuing training from epoch {epochs_trained}") |
|
logger.info(f" Continuing training from global step {cur_step}") |
|
|
|
steps_trained_progress_bar.update(cur_step) |
|
|
|
for epoch in range(0, epochs_trained): |
|
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed) |
|
|
|
if not data_args.streaming and training_args.max_steps < 0: |
|
|
|
resume_step = (cur_step - epochs_trained * steps_per_epoch) * gradient_accumulation_steps |
|
else: |
|
|
|
|
|
|
|
resume_step = None |
|
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed) |
|
else: |
|
resume_step = None |
|
|
|
for epoch in range(epochs_trained, num_epochs): |
|
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed) |
|
train_dataloader = DataLoader( |
|
vectorized_datasets["train"], |
|
collate_fn=data_collator, |
|
batch_size=per_device_train_batch_size, |
|
num_workers=dataloader_num_workers, |
|
prefetch_factor=prefetch_factor, |
|
pin_memory=training_args.dataloader_pin_memory, |
|
) |
|
train_dataloader = accelerator.prepare(train_dataloader) |
|
if hasattr(train_dataloader, "dataset") and isinstance(train_dataloader.dataset, IterableDataset): |
|
train_dataloader.dataset.set_epoch(epoch) |
|
|
|
if resume_step is not None: |
|
|
|
train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step) |
|
resume_step = None |
|
|
|
for batch in train_dataloader: |
|
with accelerator.accumulate(student_model): |
|
loss, train_metric = train_step(batch, temperature=training_args.temperature) |
|
accelerator.backward(loss) |
|
if accelerator.sync_gradients: |
|
accelerator.clip_grad_norm_(student_model.parameters(), training_args.max_grad_norm) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
|
|
|
|
if accelerator.sync_gradients: |
|
steps_trained_progress_bar.update(1) |
|
cur_step += 1 |
|
|
|
if cur_step % training_args.logging_steps == 0: |
|
steps_trained_progress_bar.write( |
|
f"Step... ({cur_step} / {total_train_steps} | Loss:" |
|
f" {train_metric['loss']}, Learning Rate:" |
|
f" {lr_scheduler.get_last_lr()[0]})" |
|
) |
|
log_metric( |
|
accelerator, |
|
metrics=train_metric, |
|
learning_rate=lr_scheduler.get_last_lr()[0], |
|
train_time=train_time + time.time() - train_start, |
|
step=cur_step, |
|
epoch=epoch, |
|
prefix="train", |
|
) |
|
|
|
|
|
if (cur_step % save_steps == 0) or cur_step == total_train_steps: |
|
intermediate_dir = os.path.join(training_args.output_dir, f"checkpoint-{cur_step}-epoch-{epoch}") |
|
accelerator.save_state(output_dir=intermediate_dir) |
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
rotate_checkpoints(training_args.save_total_limit, output_dir=training_args.output_dir) |
|
if training_args.push_to_hub: |
|
upload_folder( |
|
folder_path=training_args.output_dir, |
|
repo_id=repo_name, |
|
repo_type="model", |
|
commit_message=f"Saving train state of step {cur_step}", |
|
) |
|
|
|
if training_args.do_eval and (cur_step % eval_steps == 0 or cur_step == total_train_steps): |
|
train_time += time.time() - train_start |
|
student_model.eval() |
|
|
|
for eval_split in all_eval_splits: |
|
eval_metrics = [] |
|
eval_preds = [] |
|
eval_labels = [] |
|
eval_start = time.time() |
|
|
|
validation_dataloader = DataLoader( |
|
vectorized_datasets[eval_split], |
|
collate_fn=data_collator, |
|
batch_size=per_device_eval_batch_size, |
|
drop_last=False, |
|
num_workers=dataloader_num_workers, |
|
prefetch_factor=prefetch_factor, |
|
pin_memory=training_args.dataloader_pin_memory, |
|
) |
|
validation_dataloader = accelerator.prepare(validation_dataloader) |
|
|
|
for batch in tqdm( |
|
validation_dataloader, |
|
desc=f"Evaluating {eval_split}...", |
|
position=2, |
|
disable=not accelerator.is_local_main_process, |
|
): |
|
|
|
eval_metric = eval_step(batch) |
|
eval_metric = accelerator.gather_for_metrics(eval_metric) |
|
eval_metrics.append(eval_metric) |
|
|
|
|
|
if training_args.predict_with_generate: |
|
generated_ids = generate_step(batch) |
|
|
|
generated_ids, labels = accelerator.gather_for_metrics( |
|
(generated_ids, batch["labels"]) |
|
) |
|
eval_preds.extend(generated_ids) |
|
eval_labels.extend(labels) |
|
|
|
eval_time = time.time() - eval_start |
|
|
|
eval_metrics = { |
|
key: torch.mean(torch.stack([d[key] for d in eval_metrics])) for key in eval_metrics[0] |
|
} |
|
try: |
|
eval_metrics["perplexity"] = math.exp(eval_metrics["ce_loss"]) |
|
except OverflowError: |
|
eval_metrics["perplexity"] = float("inf") |
|
|
|
if training_args.predict_with_generate: |
|
pred_str, label_str = compute_metrics(eval_preds, eval_labels) |
|
log_pred( |
|
accelerator, |
|
pred_str, |
|
label_str, |
|
step=cur_step, |
|
epoch=epochs_trained, |
|
evaluation_strategy=training_args.evaluation_strategy, |
|
prefix=eval_split, |
|
) |
|
|
|
|
|
logger_desc = " ".join([f"Eval {key}: {value} |" for key, value in eval_metrics.items()]) |
|
steps_trained_progress_bar.write( |
|
f"Eval results for step ({cur_step} / {total_train_steps} | {logger_desc}" |
|
) |
|
|
|
log_metric( |
|
accelerator, |
|
metrics=eval_metrics, |
|
train_time=eval_time, |
|
step=cur_step, |
|
epoch=epoch, |
|
prefix=eval_split, |
|
) |
|
|
|
|
|
train_start = time.time() |
|
|
|
|
|
if cur_step == total_train_steps: |
|
|
|
student_model = accelerator.unwrap_model(student_model) |
|
student_model.save_pretrained(training_args.output_dir) |
|
if training_args.push_to_hub: |
|
upload_folder( |
|
folder_path=training_args.output_dir, |
|
repo_id=repo_name, |
|
repo_type="model", |
|
commit_message=f"Saving final weights of step {cur_step}", |
|
) |
|
continue_training = False |
|
break |
|
|
|
if not continue_training: |
|
break |
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|