Commit
•
1710729
1
Parent(s):
a0c3e1b
Upload folder using huggingface_hub
Browse files- .gitattributes +4 -0
- accelerate_config.yaml +17 -0
- checkpoint-50000-epoch-0/model.safetensors +3 -0
- checkpoint-50000-epoch-0/model_1.safetensors +3 -0
- checkpoint-50000-epoch-0/optimizer.bin +3 -0
- checkpoint-50000-epoch-0/random_states_0.pkl +3 -0
- checkpoint-50000-epoch-0/random_states_1.pkl +3 -0
- checkpoint-50000-epoch-0/random_states_2.pkl +3 -0
- checkpoint-50000-epoch-0/random_states_3.pkl +3 -0
- checkpoint-50000-epoch-0/random_states_4.pkl +3 -0
- checkpoint-50000-epoch-0/random_states_5.pkl +3 -0
- checkpoint-50000-epoch-0/random_states_6.pkl +3 -0
- checkpoint-50000-epoch-0/random_states_7.pkl +3 -0
- checkpoint-50000-epoch-0/scheduler.bin +3 -0
- config.json +27 -0
- config_dummy.yaml +30 -0
- config_mistral.yaml +42 -0
- config_mistral_100k.yaml +31 -0
- dummy_config.yaml +17 -0
- generation_config.json +7 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +64 -0
- run_distillation.py +1476 -0
- slurm_job.slurm +74 -0
- special_tokens_map.json +24 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +42 -0
- wandb/debug-cli.sanchit.log +0 -0
- wandb/debug-internal.log +3 -0
- wandb/debug.log +34 -0
- wandb/run-20240416_172306-uygw9yfk/files/conda-environment.yaml +300 -0
- wandb/run-20240416_172306-uygw9yfk/files/config.yaml +39 -0
- wandb/run-20240416_172306-uygw9yfk/files/output.log +2124 -0
- wandb/run-20240416_172306-uygw9yfk/files/requirements.txt +223 -0
- wandb/run-20240416_172306-uygw9yfk/files/wandb-metadata.json +552 -0
- wandb/run-20240416_172306-uygw9yfk/files/wandb-summary.json +1 -0
- wandb/run-20240416_172306-uygw9yfk/logs/debug-internal.log +0 -0
- wandb/run-20240416_172306-uygw9yfk/logs/debug.log +28 -0
- wandb/run-20240416_172306-uygw9yfk/run-uygw9yfk.wandb +3 -0
- wandb/run-20240416_205309-xdytsc71/files/conda-environment.yaml +300 -0
- wandb/run-20240416_205309-xdytsc71/files/config.yaml +40 -0
- wandb/run-20240416_205309-xdytsc71/files/output.log +0 -0
- wandb/run-20240416_205309-xdytsc71/files/requirements.txt +223 -0
- wandb/run-20240416_205309-xdytsc71/files/wandb-metadata.json +552 -0
- wandb/run-20240416_205309-xdytsc71/files/wandb-summary.json +1 -0
- wandb/run-20240416_205309-xdytsc71/logs/debug-internal.log +3 -0
- wandb/run-20240416_205309-xdytsc71/logs/debug.log +34 -0
- wandb/run-20240416_205309-xdytsc71/run-xdytsc71.wandb +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
wandb/debug-internal.log filter=lfs diff=lfs merge=lfs -text
|
37 |
+
wandb/run-20240416_172306-uygw9yfk/run-uygw9yfk.wandb filter=lfs diff=lfs merge=lfs -text
|
38 |
+
wandb/run-20240416_205309-xdytsc71/logs/debug-internal.log filter=lfs diff=lfs merge=lfs -text
|
39 |
+
wandb/run-20240416_205309-xdytsc71/run-xdytsc71.wandb filter=lfs diff=lfs merge=lfs -text
|
accelerate_config.yaml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
compute_environment: LOCAL_MACHINE
|
2 |
+
debug: false
|
3 |
+
distributed_type: MULTI_GPU
|
4 |
+
downcast_bf16: 'no'
|
5 |
+
enable_cpu_affinity: false
|
6 |
+
gpu_ids: all
|
7 |
+
machine_rank: 0
|
8 |
+
main_training_function: main
|
9 |
+
mixed_precision: bf16
|
10 |
+
num_machines: 1
|
11 |
+
num_processes: 8
|
12 |
+
rdzv_backend: static
|
13 |
+
same_network: true
|
14 |
+
tpu_env: []
|
15 |
+
tpu_use_cluster: false
|
16 |
+
tpu_use_sudo: false
|
17 |
+
use_cpu: false
|
checkpoint-50000-epoch-0/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6501c2c0a4b20fadfdb42633a77b04e780b08a701b1043be50ef4fa8029eb4c5
|
3 |
+
size 6283286904
|
checkpoint-50000-epoch-0/model_1.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa681ff78f80f5898262cfc263e375064613fc40aa8b147cc1a5423ee5661da1
|
3 |
+
size 4450837792
|
checkpoint-50000-epoch-0/optimizer.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b4b0fa6a4b48ec9e9817f31f7956f46662000678470e2b911c0aaf0c97da8a0
|
3 |
+
size 12566610474
|
checkpoint-50000-epoch-0/random_states_0.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9aca503cc09e63ca033e29a437a20cc580a9c1db27fef2174e533f58ba275879
|
3 |
+
size 16100
|
checkpoint-50000-epoch-0/random_states_1.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31831c2134536b1e81ba1e763e72b2ff98a14a83774fcfb30d153a66dca7879c
|
3 |
+
size 16100
|
checkpoint-50000-epoch-0/random_states_2.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a628258539b4090ce50e9faf5fda4d613f523ca957f3e837c02d316e4b20122
|
3 |
+
size 16100
|
checkpoint-50000-epoch-0/random_states_3.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d594aa54f68e8eb41c3deb9753bf43474028f44edb92db1930ebdf967f708a7c
|
3 |
+
size 16100
|
checkpoint-50000-epoch-0/random_states_4.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28ca4240374ff4b93ad0537aca2f28bfc293153a29ee8069cf09d088ca30fee7
|
3 |
+
size 16100
|
checkpoint-50000-epoch-0/random_states_5.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d6f3577977e8c32eac49b1c5136c6718fcd9c66051b703ba6e305cca03a8fb0
|
3 |
+
size 16100
|
checkpoint-50000-epoch-0/random_states_6.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0ef1d86e60e6cedda41454cd08e0b3652ab6a6eb017b4eed0d6b84866ed7d46
|
3 |
+
size 16100
|
checkpoint-50000-epoch-0/random_states_7.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08d860c07ef8d57c8162394106fcd87c34e7924d859b28b4b292e9e792a96af2
|
3 |
+
size 16100
|
checkpoint-50000-epoch-0/scheduler.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61d45b6fd8dfc8830f2ac6212faa2f2fe74d12e2ca5a21e1d98c8dea13c837b7
|
3 |
+
size 1064
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sanchit-gandhi/Mistral-7B-v0.1-6-layer",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mistral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 6,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"output_router_logits": true,
|
19 |
+
"rms_norm_eps": 1e-05,
|
20 |
+
"rope_theta": 10000.0,
|
21 |
+
"sliding_window": 4096,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.40.0.dev0",
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 32000
|
27 |
+
}
|
config_dummy.yaml
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Model arguments
|
2 |
+
model_name_or_path: sanchit-gandhi/tiny-random-MistralForCausalLM-1-layer
|
3 |
+
teacher_model_name_or_path: sanchit-gandhi/tiny-random-MistralForCausalLM-1-layer
|
4 |
+
dtype: bfloat16
|
5 |
+
load_teacher_in_4bit: true
|
6 |
+
|
7 |
+
# Data arguments
|
8 |
+
train_dataset_name: HuggingFaceTB/cosmopedia-100k
|
9 |
+
train_dataset_config_name: default
|
10 |
+
train_split_name: train[:100]
|
11 |
+
eval_split_name: train[-10:]
|
12 |
+
num_train_epochs: 2
|
13 |
+
|
14 |
+
# Training arguments
|
15 |
+
do_train: true
|
16 |
+
do_eval: true
|
17 |
+
per_device_eval_batch_size: 4
|
18 |
+
per_device_train_batch_size: 4
|
19 |
+
learning_rate: 0.0003
|
20 |
+
warmup_steps: 10
|
21 |
+
gradient_checkpointing: true
|
22 |
+
dataloader_num_workers: 2
|
23 |
+
preprocessing_num_workers: 2
|
24 |
+
save_strategy: epoch
|
25 |
+
evaluation_strategy: epoch
|
26 |
+
logging_steps: 25
|
27 |
+
overwrite_output_dir: true
|
28 |
+
output_router_logits: true
|
29 |
+
report_to: wandb
|
30 |
+
output_dir: ./
|
config_mistral.yaml
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Model arguments
|
2 |
+
model_name_or_path: sanchit-gandhi/Mistral-7B-v0.1-6-layer
|
3 |
+
teacher_model_name_or_path: mistralai/Mistral-7B-v0.1
|
4 |
+
dtype: bfloat16
|
5 |
+
load_teacher_in_4bit: true
|
6 |
+
|
7 |
+
# Data arguments
|
8 |
+
train_dataset_name: HuggingFaceTB/cosmopedia
|
9 |
+
train_dataset_config_name:
|
10 |
+
- auto_math_text
|
11 |
+
- khanacademy
|
12 |
+
- openstax
|
13 |
+
- stanford
|
14 |
+
- stories
|
15 |
+
- web_samples_v1
|
16 |
+
- web_samples_v2
|
17 |
+
- wikihow
|
18 |
+
train_split_name: train[1000:]
|
19 |
+
eval_split_name: train[:1000]
|
20 |
+
max_steps: 50000
|
21 |
+
|
22 |
+
# Training arguments
|
23 |
+
do_train: true
|
24 |
+
do_eval: true
|
25 |
+
per_device_eval_batch_size: 8
|
26 |
+
per_device_train_batch_size: 8
|
27 |
+
learning_rate: 0.0003
|
28 |
+
warmup_steps: 500
|
29 |
+
gradient_checkpointing: true
|
30 |
+
dataloader_num_workers: 4
|
31 |
+
preprocessing_num_workers: 32
|
32 |
+
ddp_timeout: 7200
|
33 |
+
save_strategy: steps
|
34 |
+
save_steps: 5000
|
35 |
+
evaluation_strategy: steps
|
36 |
+
eval_steps: 5000
|
37 |
+
logging_steps: 25
|
38 |
+
output_router_logits: true
|
39 |
+
report_to: wandb
|
40 |
+
output_dir: ./
|
41 |
+
overwrite_output_dir: true
|
42 |
+
save_total_limit: 1
|
config_mistral_100k.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Model arguments
|
2 |
+
model_name_or_path: sanchit-gandhi/Mistral-7B-v0.1-6-layer
|
3 |
+
teacher_model_name_or_path: mistralai/Mistral-7B-v0.1
|
4 |
+
dtype: bfloat16
|
5 |
+
load_teacher_in_4bit: true
|
6 |
+
|
7 |
+
# Data arguments
|
8 |
+
train_dataset_name: HuggingFaceTB/cosmopedia-100k
|
9 |
+
train_dataset_config_name: default
|
10 |
+
train_split_name: train[:-1000]
|
11 |
+
eval_split_name: train[-1000:]
|
12 |
+
num_train_epochs: 10
|
13 |
+
|
14 |
+
# Training arguments
|
15 |
+
do_train: true
|
16 |
+
do_eval: true
|
17 |
+
per_device_eval_batch_size: 8
|
18 |
+
per_device_train_batch_size: 8
|
19 |
+
learning_rate: 0.0003
|
20 |
+
warmup_steps: 500
|
21 |
+
gradient_checkpointing: true
|
22 |
+
dataloader_num_workers: 4
|
23 |
+
preprocessing_num_workers: 32
|
24 |
+
ddp_timeout: 7200
|
25 |
+
save_strategy: epoch
|
26 |
+
evaluation_strategy: epoch
|
27 |
+
logging_steps: 25
|
28 |
+
overwrite_output_dir: true
|
29 |
+
output_router_logits: true
|
30 |
+
report_to: wandb
|
31 |
+
output_dir: ./
|
dummy_config.yaml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
compute_environment: LOCAL_MACHINE
|
2 |
+
debug: false
|
3 |
+
distributed_type: MULTI_GPU
|
4 |
+
downcast_bf16: 'no'
|
5 |
+
enable_cpu_affinity: false
|
6 |
+
gpu_ids: all
|
7 |
+
machine_rank: 0
|
8 |
+
main_training_function: main
|
9 |
+
mixed_precision: bf16
|
10 |
+
num_machines: 1
|
11 |
+
num_processes: 1
|
12 |
+
rdzv_backend: static
|
13 |
+
same_network: true
|
14 |
+
tpu_env: []
|
15 |
+
tpu_use_cluster: false
|
16 |
+
tpu_use_sudo: false
|
17 |
+
use_cpu: false
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"max_length": 2048,
|
6 |
+
"transformers_version": "4.40.0.dev0"
|
7 |
+
}
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2680ce25539a3c26efbd0f16858e75f000cd77a2b5e5b9a779fa1c9372f99fd1
|
3 |
+
size 4987196936
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c460170c8538156b83ccbd6a9b037e989f6bf7740c29d9d1633746982c71c84
|
3 |
+
size 1296089984
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6283280384
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
54 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
55 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
56 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
57 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
58 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
60 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
63 |
+
}
|
64 |
+
}
|
run_distillation.py
ADDED
@@ -0,0 +1,1476 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Training langauge models Whisper model for conditional language modelling tasks via teacher-student distillation.
|
18 |
+
"""
|
19 |
+
# You can also adapt this script for your own distillation tasks. Pointers for this are left as comments.
|
20 |
+
|
21 |
+
import logging
|
22 |
+
import math
|
23 |
+
import os
|
24 |
+
import re
|
25 |
+
import shutil
|
26 |
+
import sys
|
27 |
+
import time
|
28 |
+
from dataclasses import dataclass, field
|
29 |
+
from functools import partial
|
30 |
+
from pathlib import Path
|
31 |
+
from typing import Dict, List, Optional, Union
|
32 |
+
|
33 |
+
import datasets
|
34 |
+
import numpy as np
|
35 |
+
import torch
|
36 |
+
import torch.nn as nn
|
37 |
+
import transformers
|
38 |
+
from accelerate import Accelerator
|
39 |
+
from accelerate.logging import get_logger
|
40 |
+
from datasets import (
|
41 |
+
Dataset,
|
42 |
+
DatasetDict,
|
43 |
+
IterableDataset,
|
44 |
+
IterableDatasetDict,
|
45 |
+
concatenate_datasets,
|
46 |
+
interleave_datasets,
|
47 |
+
load_dataset,
|
48 |
+
)
|
49 |
+
from huggingface_hub import create_repo, get_full_repo_name, upload_folder
|
50 |
+
from peft import LoraConfig, get_peft_model
|
51 |
+
from torch.utils.data import DataLoader
|
52 |
+
from tqdm import tqdm
|
53 |
+
from transformers import (
|
54 |
+
AutoConfig,
|
55 |
+
AutoModelForCausalLM,
|
56 |
+
AutoTokenizer,
|
57 |
+
BatchEncoding,
|
58 |
+
BitsAndBytesConfig,
|
59 |
+
HfArgumentParser,
|
60 |
+
PreTrainedTokenizerBase,
|
61 |
+
Seq2SeqTrainingArguments,
|
62 |
+
get_scheduler,
|
63 |
+
set_seed,
|
64 |
+
)
|
65 |
+
from transformers.utils import check_min_version
|
66 |
+
from transformers.utils.versions import require_version
|
67 |
+
|
68 |
+
|
69 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
70 |
+
check_min_version("4.34.0.dev0")
|
71 |
+
|
72 |
+
require_version("datasets>=2.14.6", "To fix: `pip install --upgrade datasets`")
|
73 |
+
|
74 |
+
logger = get_logger(__name__)
|
75 |
+
|
76 |
+
|
77 |
+
@dataclass
|
78 |
+
class ModelArguments:
|
79 |
+
"""
|
80 |
+
Arguments pertaining to which model/config/tokenizer we are going to distill from.
|
81 |
+
"""
|
82 |
+
|
83 |
+
model_name_or_path: str = field(
|
84 |
+
metadata={"help": "Path to pretrained Whisper model or model identifier from huggingface.co/models"}
|
85 |
+
)
|
86 |
+
teacher_model_name_or_path: str = field(
|
87 |
+
metadata={"help": "Path to pretrained teacher model or model identifier from huggingface.co/models"}
|
88 |
+
)
|
89 |
+
config_name: Optional[str] = field(
|
90 |
+
default=None,
|
91 |
+
metadata={"help": "Pretrained config name or path if not the same as model_name"},
|
92 |
+
)
|
93 |
+
tokenizer_name: Optional[str] = field(
|
94 |
+
default=None,
|
95 |
+
metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"},
|
96 |
+
)
|
97 |
+
cache_dir: Optional[str] = field(
|
98 |
+
default=None,
|
99 |
+
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
|
100 |
+
)
|
101 |
+
use_fast_tokenizer: bool = field(
|
102 |
+
default=True,
|
103 |
+
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
104 |
+
)
|
105 |
+
model_revision: str = field(
|
106 |
+
default="main",
|
107 |
+
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
108 |
+
)
|
109 |
+
subfolder: str = field(
|
110 |
+
default="",
|
111 |
+
metadata={
|
112 |
+
"help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can"
|
113 |
+
"specify the folder name here."
|
114 |
+
},
|
115 |
+
)
|
116 |
+
token: str = field(
|
117 |
+
default=None,
|
118 |
+
metadata={
|
119 |
+
"help": (
|
120 |
+
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
121 |
+
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
122 |
+
)
|
123 |
+
},
|
124 |
+
)
|
125 |
+
attn_implementation: Optional[str] = field(
|
126 |
+
default=None,
|
127 |
+
metadata={
|
128 |
+
"help": (
|
129 |
+
"Which attention implementation to use in the encoder and decoder attention layers. Can be one of:\n"
|
130 |
+
"1. `eager` or `None`: default Transformers attention implementation.\n"
|
131 |
+
"2. `sdpa`: Flash Attention through PyTorch SDPA. Requires `torch>=2.1`. Recommended for hardware where Flash Attention 2 is not supported, e.g. Turing GPUs, (T4, RTX 2080).\n"
|
132 |
+
"3. `flash_attn_2`: Flash Attention 2 through the Flash Attention package https://github.com/Dao-AILab/flash-attention. **Always** recommended on supported hardware (Ampere, Ada, or Hopper GPUs, e.g., A100, RTX 3090, RTX 4090, H100)."
|
133 |
+
)
|
134 |
+
},
|
135 |
+
)
|
136 |
+
load_teacher_in_8bit: bool = field(default=False, metadata={"help": "Use 8 bit precision for the teacher model."})
|
137 |
+
load_teacher_in_4bit: bool = field(default=False, metadata={"help": "Use 4 bit precision for the teacher model."})
|
138 |
+
load_student_in_8bit: bool = field(default=False, metadata={"help": "Use 8 bit precision for the student model."})
|
139 |
+
load_student_in_4bit: bool = field(default=False, metadata={"help": "Use 4 bit precision for the student model."})
|
140 |
+
bnb_4bit_quant_type: Optional[str] = field(
|
141 |
+
default="nf4", metadata={"help": "Quantization type if the teacher is quantized (fp4 or nf4)"}
|
142 |
+
)
|
143 |
+
use_bnb_nested_quant: bool = field(default=False, metadata={"help": "Whether or not to use nested quantization."})
|
144 |
+
lora_r: Optional[int] = field(
|
145 |
+
default=16,
|
146 |
+
metadata={"help": "LoRA R value."},
|
147 |
+
)
|
148 |
+
lora_alpha: Optional[int] = field(
|
149 |
+
default=32,
|
150 |
+
metadata={"help": "LoRA alpha."},
|
151 |
+
)
|
152 |
+
lora_dropout: Optional[float] = field(
|
153 |
+
default=0.05,
|
154 |
+
metadata={"help": "LoRA dropout."},
|
155 |
+
)
|
156 |
+
lora_target_modules: Optional[List[str]] = field(
|
157 |
+
default=None,
|
158 |
+
metadata={"help": "LoRA target modules."},
|
159 |
+
)
|
160 |
+
lora_modules_to_save: Optional[List[str]] = field(
|
161 |
+
default=None,
|
162 |
+
metadata={"help": "Model layers to unfreeze & train"},
|
163 |
+
)
|
164 |
+
|
165 |
+
|
166 |
+
@dataclass
|
167 |
+
class DataTrainingArguments:
|
168 |
+
"""
|
169 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
170 |
+
"""
|
171 |
+
|
172 |
+
train_dataset_name: List[str] = field(
|
173 |
+
default=None,
|
174 |
+
metadata={
|
175 |
+
"help": "The name of the training dataset to use (via the datasets library). Load and combine "
|
176 |
+
"multiple datasets by separating dataset ids by a '+' symbol. For example, to load LibriSpeech "
|
177 |
+
"and Common Voice, set `train_dataset_name='librispeech_asr+common_voice'`."
|
178 |
+
},
|
179 |
+
)
|
180 |
+
train_dataset_config_name: Optional[List[str]] = field(
|
181 |
+
default=None,
|
182 |
+
metadata={
|
183 |
+
"help": "The configuration name of the training dataset to use (via the datasets library). Load and combine "
|
184 |
+
"multiple datasets by separating dataset configs by a '+' symbol. Note that the order of the configs should "
|
185 |
+
"match the order of the datasets."
|
186 |
+
},
|
187 |
+
)
|
188 |
+
train_dataset_samples: Optional[List[str]] = field(
|
189 |
+
default=None,
|
190 |
+
metadata={
|
191 |
+
"help": "Number of samples in each dataset when loading multiple datasets with streaming mode. "
|
192 |
+
"Not required when using one dataset or non-streaming mode. The sample values provide the sampling "
|
193 |
+
"probability for each dataset. Setting them equal to the number of sample values ensures that every "
|
194 |
+
"sample from every dataset is used once per epoch."
|
195 |
+
},
|
196 |
+
)
|
197 |
+
eval_dataset_name: Optional[List[str]] = field(
|
198 |
+
default=None,
|
199 |
+
metadata={
|
200 |
+
"help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training "
|
201 |
+
"dataset name if unspecified. Load multiple evaluation datasets by separating dataset "
|
202 |
+
"ids by a '+' symbol."
|
203 |
+
},
|
204 |
+
)
|
205 |
+
eval_dataset_config_name: Optional[List[str]] = field(
|
206 |
+
default=None,
|
207 |
+
metadata={
|
208 |
+
"help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the "
|
209 |
+
"training dataset config name if unspecified."
|
210 |
+
},
|
211 |
+
)
|
212 |
+
dataset_cache_dir: Optional[str] = field(
|
213 |
+
default=None,
|
214 |
+
metadata={"help": "Path to cache directory for saving and loading datasets"},
|
215 |
+
)
|
216 |
+
overwrite_cache: bool = field(
|
217 |
+
default=False,
|
218 |
+
metadata={"help": "Overwrite the cached training and evaluation sets"},
|
219 |
+
)
|
220 |
+
preprocessing_num_workers: Optional[int] = field(
|
221 |
+
default=None,
|
222 |
+
metadata={"help": "The number of processes to use for the preprocessing if using non-streaming mode."},
|
223 |
+
)
|
224 |
+
max_train_samples: Optional[int] = field(
|
225 |
+
default=None,
|
226 |
+
metadata={
|
227 |
+
"help": (
|
228 |
+
"For debugging purposes or quicker training, truncate the number of training examples to this value if set."
|
229 |
+
)
|
230 |
+
},
|
231 |
+
)
|
232 |
+
max_eval_samples: Optional[int] = field(
|
233 |
+
default=None,
|
234 |
+
metadata={
|
235 |
+
"help": (
|
236 |
+
"For debugging purposes or quicker training, truncate the number of evaluation examples to this value if set."
|
237 |
+
)
|
238 |
+
},
|
239 |
+
)
|
240 |
+
text_column_name: str = field(
|
241 |
+
default=None,
|
242 |
+
metadata={"help": "The name of the dataset column containing the generated text data in the training set."},
|
243 |
+
)
|
244 |
+
prompt_column_name: str = field(
|
245 |
+
default=None,
|
246 |
+
metadata={"help": "The name of the dataset column containing the prompt data. Defaults to 'prompt'"},
|
247 |
+
)
|
248 |
+
eval_text_column_name: str = field(
|
249 |
+
default=None,
|
250 |
+
metadata={"help": "The name of the dataset column containing the generated text data in the evaluation set."},
|
251 |
+
)
|
252 |
+
eval_prompt_column_name: str = field(
|
253 |
+
default=None,
|
254 |
+
metadata={"help": "The name of the dataset column containing the prompt data in the evaluation set."},
|
255 |
+
)
|
256 |
+
max_label_length: int = field(
|
257 |
+
default=2048,
|
258 |
+
metadata={"help": "Truncate target labels that are longer `max_label_length` tokens."},
|
259 |
+
)
|
260 |
+
pad_target_to_multiple_of: Optional[int] = field(
|
261 |
+
default=None,
|
262 |
+
metadata={
|
263 |
+
"help": (
|
264 |
+
"If set will pad the target sequence to a multiple of the provided value. This is important to "
|
265 |
+
"avoid triggering recompilations when using torch compile. If unspecified, will default to padding "
|
266 |
+
"the targets to max length."
|
267 |
+
)
|
268 |
+
},
|
269 |
+
)
|
270 |
+
preprocessing_only: bool = field(
|
271 |
+
default=False,
|
272 |
+
metadata={
|
273 |
+
"help": (
|
274 |
+
"Whether to only do data preprocessing and skip training. This is especially useful when data "
|
275 |
+
"preprocessing errors out in distributed training due to timeout. In this case, one should run the "
|
276 |
+
"preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets "
|
277 |
+
"can consequently be loaded in distributed training"
|
278 |
+
)
|
279 |
+
},
|
280 |
+
)
|
281 |
+
train_split_name: Optional[List[str]] = field(
|
282 |
+
default=lambda: ["train"],
|
283 |
+
metadata={
|
284 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
285 |
+
},
|
286 |
+
)
|
287 |
+
eval_split_name: Optional[List[str]] = field(
|
288 |
+
default=lambda: ["validation"],
|
289 |
+
metadata={
|
290 |
+
"help": (
|
291 |
+
"The name of the evaluation data set split to use (via the datasets library). Defaults to 'validation'"
|
292 |
+
)
|
293 |
+
},
|
294 |
+
)
|
295 |
+
streaming: bool = field(
|
296 |
+
default=False,
|
297 |
+
metadata={"help": "Whether to use Datasets' streaming mode to load and pre-process the data."},
|
298 |
+
)
|
299 |
+
wandb_project: str = field(
|
300 |
+
default="distil-mixtral",
|
301 |
+
metadata={"help": "The name of the wandb project."},
|
302 |
+
)
|
303 |
+
|
304 |
+
|
305 |
+
@dataclass
|
306 |
+
class DistillationTrainingArguments(Seq2SeqTrainingArguments):
|
307 |
+
freeze_lm_head: Optional[bool] = field(
|
308 |
+
default=False, metadata={"help": "Whether to freeze the LM head of the student model."}
|
309 |
+
)
|
310 |
+
temperature: Optional[float] = field(
|
311 |
+
default=2.0, metadata={"help": "Temperature to anneal the logits when computing the softmax."}
|
312 |
+
)
|
313 |
+
kl_weight: Optional[float] = field(
|
314 |
+
default=1.0,
|
315 |
+
metadata={
|
316 |
+
"help": (
|
317 |
+
"Weighting assigned to the MSE loss in the KD formulation. MSE loss is "
|
318 |
+
"computed between the teacher-student hidden states and attentions."
|
319 |
+
)
|
320 |
+
},
|
321 |
+
)
|
322 |
+
output_router_logits: bool = field(
|
323 |
+
default=False,
|
324 |
+
metadata={
|
325 |
+
"help": "Whether or not to return the router logits in the forward pass. Enabling this will "
|
326 |
+
"also configure the model to compute the auxiliary loss."
|
327 |
+
},
|
328 |
+
)
|
329 |
+
dtype: Optional[str] = field(
|
330 |
+
default="float32",
|
331 |
+
metadata={
|
332 |
+
"help": (
|
333 |
+
"The data type (dtype) in which to run training. One of `float32` (full-precision), "
|
334 |
+
"`float16` or `bfloat16` (both half-precision)."
|
335 |
+
)
|
336 |
+
},
|
337 |
+
)
|
338 |
+
|
339 |
+
|
340 |
+
@dataclass
|
341 |
+
class DataCollatorCausalLMWithPadding:
|
342 |
+
"""
|
343 |
+
Data collator that will dynamically pad the inputs received.
|
344 |
+
Args:
|
345 |
+
tokenizer ([`PreTrainedTokenizer`])
|
346 |
+
The tokenizer used for tokenizing the data.
|
347 |
+
target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
348 |
+
Select a strategy to pad the returned target sequences (according to the model's padding side and padding index).
|
349 |
+
See above for details.
|
350 |
+
max_target_length (:obj:`int`, `optional`):
|
351 |
+
Maximum length of the ``labels`` of the returned list and optionally padding length (see above).
|
352 |
+
"""
|
353 |
+
|
354 |
+
tokenizer: PreTrainedTokenizerBase
|
355 |
+
target_padding: Union[bool, str] = "max_length"
|
356 |
+
max_target_length: Optional[int] = None
|
357 |
+
|
358 |
+
def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> BatchEncoding:
|
359 |
+
# dataloader returns a list of features which we convert to a dict
|
360 |
+
label_features = {"input_ids": [feature["labels"] for feature in features]}
|
361 |
+
prompt_lengths = [feature["prompt_length"] for feature in features]
|
362 |
+
|
363 |
+
batch = self.tokenizer.pad(
|
364 |
+
label_features,
|
365 |
+
max_length=self.max_target_length,
|
366 |
+
padding=self.target_padding,
|
367 |
+
return_tensors="pt",
|
368 |
+
)
|
369 |
+
|
370 |
+
labels_mask = batch["attention_mask"]
|
371 |
+
|
372 |
+
# don't include prompts in loss calculation
|
373 |
+
for idx in range(len(prompt_lengths)):
|
374 |
+
labels_mask[idx, : prompt_lengths[idx]] = 0
|
375 |
+
|
376 |
+
# replace padding with -100 to ignore loss correctly
|
377 |
+
labels = batch["input_ids"].masked_fill(labels_mask.ne(1), -100)
|
378 |
+
|
379 |
+
batch["labels"] = labels
|
380 |
+
|
381 |
+
return batch
|
382 |
+
|
383 |
+
|
384 |
+
def log_metric(
|
385 |
+
accelerator,
|
386 |
+
metrics: Dict,
|
387 |
+
train_time: float,
|
388 |
+
step: int,
|
389 |
+
epoch: int,
|
390 |
+
learning_rate: float = None,
|
391 |
+
prefix: str = "train",
|
392 |
+
):
|
393 |
+
"""Helper function to log all training/evaluation metrics with the correct prefixes and styling."""
|
394 |
+
log_metrics = {}
|
395 |
+
for k, v in metrics.items():
|
396 |
+
log_metrics[f"{prefix}/{k}"] = v
|
397 |
+
log_metrics[f"{prefix}/time"] = train_time
|
398 |
+
log_metrics[f"{prefix}/epoch"] = epoch
|
399 |
+
if learning_rate is not None:
|
400 |
+
log_metrics[f"{prefix}/learning_rate"] = learning_rate
|
401 |
+
accelerator.log(log_metrics, step=step)
|
402 |
+
|
403 |
+
|
404 |
+
def log_pred(
|
405 |
+
accelerator,
|
406 |
+
pred_str: List[str],
|
407 |
+
label_str: List[str],
|
408 |
+
step: int,
|
409 |
+
epoch: int,
|
410 |
+
evaluation_strategy: str,
|
411 |
+
prefix: str = "eval",
|
412 |
+
num_lines: int = 200000,
|
413 |
+
):
|
414 |
+
"""Helper function to log target/predicted transcriptions to weights and biases (wandb)."""
|
415 |
+
if accelerator.is_main_process:
|
416 |
+
wandb_tracker = accelerator.get_tracker("wandb")
|
417 |
+
# pretty name for current step: step 50000 -> step 50k
|
418 |
+
cur_step_pretty = f"{int(step // 1000)}k" if step > 1000 else step
|
419 |
+
prefix_pretty = prefix.replace("/", "-")
|
420 |
+
|
421 |
+
if evaluation_strategy == "epoch":
|
422 |
+
table_name = f"predictions/{prefix_pretty}-epoch-{epoch}"
|
423 |
+
else:
|
424 |
+
table_name = f"predictions/{prefix_pretty}-step-{cur_step_pretty}"
|
425 |
+
|
426 |
+
# convert str data to a wandb compatible format
|
427 |
+
str_data = [[label_str[i], pred_str[i]] for i in range(len(pred_str))]
|
428 |
+
# log as a table with the appropriate headers
|
429 |
+
wandb_tracker.log_table(
|
430 |
+
table_name=table_name,
|
431 |
+
columns=["Target", "Pred"],
|
432 |
+
data=str_data[:num_lines],
|
433 |
+
step=step,
|
434 |
+
)
|
435 |
+
|
436 |
+
|
437 |
+
def convert_dataset_str_to_list(
|
438 |
+
dataset_names,
|
439 |
+
dataset_config_names,
|
440 |
+
splits=None,
|
441 |
+
text_column_names=None,
|
442 |
+
prompt_column_names=None,
|
443 |
+
dataset_samples=None,
|
444 |
+
default_split="train",
|
445 |
+
) -> List[Dict]:
|
446 |
+
"""
|
447 |
+
Given three lists of dataset names, configs and splits, this function groups the corresponding
|
448 |
+
names/configs/splits. Each dataset is assigned a unique dictionary with these metadata values, and the
|
449 |
+
function returns a list of dictionaries, one for each dataset.
|
450 |
+
"""
|
451 |
+
if isinstance(dataset_names, str):
|
452 |
+
dataset_names = [dataset_names]
|
453 |
+
splits = [splits] if splits else None
|
454 |
+
text_column_names = [text_column_names] if text_column_names else None
|
455 |
+
prompt_column_names = [prompt_column_names] if prompt_column_names else None
|
456 |
+
if isinstance(dataset_config_names, str):
|
457 |
+
dataset_config_names = [dataset_config_names]
|
458 |
+
|
459 |
+
if len(dataset_names) == 1 and len(dataset_config_names) > 1:
|
460 |
+
dataset_names = len(dataset_config_names) * dataset_names
|
461 |
+
|
462 |
+
if isinstance(splits, list) and len(splits) == 1 and len(dataset_config_names) > 1:
|
463 |
+
splits = len(dataset_config_names) * splits
|
464 |
+
|
465 |
+
# basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs
|
466 |
+
if dataset_config_names is not None and len(dataset_names) != len(dataset_config_names):
|
467 |
+
raise ValueError(
|
468 |
+
f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
|
469 |
+
f" {len(dataset_config_names)} configs."
|
470 |
+
)
|
471 |
+
|
472 |
+
if splits is not None and len(splits) != len(dataset_names):
|
473 |
+
raise ValueError(
|
474 |
+
f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
|
475 |
+
)
|
476 |
+
|
477 |
+
if text_column_names is not None and len(text_column_names) != len(dataset_names):
|
478 |
+
raise ValueError(
|
479 |
+
f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and"
|
480 |
+
f" {len(text_column_names)} text column names."
|
481 |
+
)
|
482 |
+
|
483 |
+
if prompt_column_names is not None and len(prompt_column_names) != len(dataset_names):
|
484 |
+
raise ValueError(
|
485 |
+
f"Ensure one prompt column name is passed for each dataset, got {len(dataset_names)} datasets and"
|
486 |
+
f" {len(prompt_column_names)} prompt column names."
|
487 |
+
)
|
488 |
+
|
489 |
+
if dataset_samples is not None:
|
490 |
+
if len(dataset_samples) != len(dataset_names):
|
491 |
+
raise ValueError(
|
492 |
+
f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and "
|
493 |
+
f"{len(dataset_samples)} samples."
|
494 |
+
)
|
495 |
+
dataset_samples = [float(ds_sample) for ds_sample in dataset_samples]
|
496 |
+
else:
|
497 |
+
dataset_samples = [None] * len(dataset_names)
|
498 |
+
|
499 |
+
dataset_config_names = (
|
500 |
+
dataset_config_names if dataset_config_names is not None else ["default" for _ in range(len(dataset_names))]
|
501 |
+
)
|
502 |
+
text_column_names = (
|
503 |
+
text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))]
|
504 |
+
)
|
505 |
+
prompt_column_names = (
|
506 |
+
prompt_column_names if prompt_column_names is not None else ["prompt" for _ in range(len(dataset_names))]
|
507 |
+
)
|
508 |
+
splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))]
|
509 |
+
|
510 |
+
dataset_names_dict = []
|
511 |
+
for i, ds_name in enumerate(dataset_names):
|
512 |
+
dataset_names_dict.append(
|
513 |
+
{
|
514 |
+
"name": ds_name,
|
515 |
+
"config": dataset_config_names[i],
|
516 |
+
"split": splits[i],
|
517 |
+
"text_column_name": text_column_names[i],
|
518 |
+
"prompt_column_name": prompt_column_names[i],
|
519 |
+
"samples": dataset_samples[i],
|
520 |
+
}
|
521 |
+
)
|
522 |
+
return dataset_names_dict
|
523 |
+
|
524 |
+
|
525 |
+
def load_multiple_datasets(
|
526 |
+
dataset_names: Union[List, str],
|
527 |
+
dataset_config_names: Union[List, str],
|
528 |
+
splits: Optional[Union[List, str]] = None,
|
529 |
+
text_column_names: Optional[List] = None,
|
530 |
+
prompt_column_names: Optional[List] = None,
|
531 |
+
stopping_strategy: Optional[str] = "first_exhausted",
|
532 |
+
dataset_samples: Optional[Union[List, np.array]] = None,
|
533 |
+
streaming: Optional[bool] = False,
|
534 |
+
seed: Optional[int] = None,
|
535 |
+
accelerator: Optional[Accelerator] = None,
|
536 |
+
**kwargs,
|
537 |
+
) -> Union[Dataset, IterableDataset]:
|
538 |
+
dataset_names_dict = convert_dataset_str_to_list(
|
539 |
+
dataset_names, dataset_config_names, splits, text_column_names, prompt_column_names, dataset_samples
|
540 |
+
)
|
541 |
+
|
542 |
+
if dataset_samples is not None:
|
543 |
+
dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict]
|
544 |
+
probabilities = np.array(dataset_samples) / np.sum(dataset_samples)
|
545 |
+
else:
|
546 |
+
probabilities = None
|
547 |
+
|
548 |
+
all_datasets = []
|
549 |
+
# iterate over the datasets we want to interleave
|
550 |
+
for dataset_dict in tqdm(
|
551 |
+
dataset_names_dict,
|
552 |
+
desc="Combining datasets...",
|
553 |
+
disable=not accelerator.is_main_process,
|
554 |
+
):
|
555 |
+
dataset = load_dataset(
|
556 |
+
dataset_dict["name"],
|
557 |
+
dataset_dict["config"],
|
558 |
+
split=dataset_dict["split"],
|
559 |
+
streaming=streaming,
|
560 |
+
**kwargs,
|
561 |
+
)
|
562 |
+
|
563 |
+
columns_to_keep = {"text"}
|
564 |
+
dataset_features = dataset.features.keys()
|
565 |
+
|
566 |
+
if dataset_dict["text_column_name"] not in dataset_features:
|
567 |
+
raise ValueError(
|
568 |
+
f"Text column name {dataset_dict['text_column_name']} not found in dataset"
|
569 |
+
f" '{dataset_dict['name']}'. Make sure to set `--text_column_name` to the"
|
570 |
+
f" correct text column - one of {', '.join(dataset_features)}."
|
571 |
+
)
|
572 |
+
|
573 |
+
# blanket renaming of all transcription columns to text
|
574 |
+
if dataset_dict["text_column_name"] != "text":
|
575 |
+
dataset = dataset.rename_column(dataset_dict["text_column_name"], "text")
|
576 |
+
|
577 |
+
# blanket renaming of all prompt columns to prompt
|
578 |
+
if dataset_dict["prompt_column_name"] is not None:
|
579 |
+
if dataset_dict["prompt_column_name"] not in dataset_features:
|
580 |
+
raise ValueError(
|
581 |
+
f"Prompt column name {dataset_dict['prompt_column_name']} not found in dataset"
|
582 |
+
f" '{dataset_dict['name']}'. Make sure to set `--prompt_column_name` to the"
|
583 |
+
f" correct prompt column - one of {', '.join(dataset_features)}."
|
584 |
+
)
|
585 |
+
elif dataset_dict["prompt_column_name"] != "prompt":
|
586 |
+
dataset = dataset.rename_column(dataset_dict["prompt_column_name"], "prompt")
|
587 |
+
columns_to_keep.add("prompt")
|
588 |
+
|
589 |
+
dataset = dataset.remove_columns(set(dataset_features - columns_to_keep))
|
590 |
+
all_datasets.append(dataset)
|
591 |
+
|
592 |
+
if len(all_datasets) == 1:
|
593 |
+
# we have a single dataset so just return it as is
|
594 |
+
return all_datasets[0]
|
595 |
+
|
596 |
+
if streaming:
|
597 |
+
interleaved_dataset = interleave_datasets(
|
598 |
+
all_datasets,
|
599 |
+
stopping_strategy=stopping_strategy,
|
600 |
+
probabilities=probabilities,
|
601 |
+
seed=seed,
|
602 |
+
)
|
603 |
+
else:
|
604 |
+
interleaved_dataset = concatenate_datasets(all_datasets)
|
605 |
+
|
606 |
+
return interleaved_dataset
|
607 |
+
|
608 |
+
|
609 |
+
def sorted_checkpoints(output_dir=None, checkpoint_prefix="checkpoint") -> List[str]:
|
610 |
+
"""Helper function to sort saved checkpoints from oldest to newest."""
|
611 |
+
ordering_and_checkpoint_path = []
|
612 |
+
|
613 |
+
glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)]
|
614 |
+
|
615 |
+
for path in glob_checkpoints:
|
616 |
+
regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
|
617 |
+
if regex_match is not None and regex_match.groups() is not None:
|
618 |
+
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
|
619 |
+
|
620 |
+
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
|
621 |
+
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
|
622 |
+
return checkpoints_sorted
|
623 |
+
|
624 |
+
|
625 |
+
def rotate_checkpoints(save_total_limit=None, output_dir=None, checkpoint_prefix="checkpoint") -> None:
|
626 |
+
"""Helper function to delete old checkpoints."""
|
627 |
+
if save_total_limit is None or save_total_limit <= 0:
|
628 |
+
return
|
629 |
+
# Check if we should delete older checkpoint(s)
|
630 |
+
checkpoints_sorted = sorted_checkpoints(output_dir=output_dir, checkpoint_prefix=checkpoint_prefix)
|
631 |
+
if len(checkpoints_sorted) <= save_total_limit:
|
632 |
+
return
|
633 |
+
|
634 |
+
number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit)
|
635 |
+
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
|
636 |
+
for checkpoint in checkpoints_to_be_deleted:
|
637 |
+
logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
|
638 |
+
shutil.rmtree(checkpoint, ignore_errors=True)
|
639 |
+
|
640 |
+
|
641 |
+
_RE_CHECKPOINT = re.compile(r"^checkpoint-(\d+)-epoch-(\d+)$")
|
642 |
+
|
643 |
+
|
644 |
+
def get_last_checkpoint(folder):
|
645 |
+
content = os.listdir(folder)
|
646 |
+
checkpoints = [
|
647 |
+
path
|
648 |
+
for path in content
|
649 |
+
if _RE_CHECKPOINT.search(path) is not None and os.path.isdir(os.path.join(folder, path))
|
650 |
+
]
|
651 |
+
if len(checkpoints) == 0:
|
652 |
+
return
|
653 |
+
return os.path.join(folder, max(checkpoints, key=lambda x: int(_RE_CHECKPOINT.search(x).groups()[0])))
|
654 |
+
|
655 |
+
|
656 |
+
def get_parameter_names(model, forbidden_layer_types, forbidden_module=None):
|
657 |
+
"""
|
658 |
+
Returns the names of the model parameters that are not inside a forbidden layer or forbidden module.
|
659 |
+
Can be used to get a subset of parameter names for decay masks, or to exclude parameters from an optimiser
|
660 |
+
(e.g. if the module is frozen).
|
661 |
+
"""
|
662 |
+
result = []
|
663 |
+
for name, child in model.named_children():
|
664 |
+
result += [
|
665 |
+
f"{name}.{n}"
|
666 |
+
for n in get_parameter_names(child, forbidden_layer_types, forbidden_module)
|
667 |
+
if not (
|
668 |
+
isinstance(child, tuple(forbidden_layer_types))
|
669 |
+
or (child in tuple(forbidden_module) if forbidden_module is not None else False)
|
670 |
+
)
|
671 |
+
]
|
672 |
+
# Add model specific parameters (defined with nn.Parameter) since they are not in any child.
|
673 |
+
result += list(model._parameters.keys())
|
674 |
+
return result
|
675 |
+
|
676 |
+
|
677 |
+
def get_quantization_config(
|
678 |
+
model_args: ModelArguments, torch_dtype: torch.dtype
|
679 |
+
) -> tuple[BitsAndBytesConfig | None, BitsAndBytesConfig | None]:
|
680 |
+
if model_args.load_teacher_in_4bit:
|
681 |
+
quantization_config_teacher = BitsAndBytesConfig(
|
682 |
+
load_in_4bit=True,
|
683 |
+
bnb_4bit_compute_dtype=torch_dtype,
|
684 |
+
bnb_4bit_quant_type=model_args.bnb_4bit_quant_type,
|
685 |
+
bnb_4bit_use_double_quant=model_args.use_bnb_nested_quant,
|
686 |
+
)
|
687 |
+
elif model_args.load_teacher_in_8bit:
|
688 |
+
quantization_config_teacher = BitsAndBytesConfig(load_in_8bit=True)
|
689 |
+
else:
|
690 |
+
quantization_config_teacher = None
|
691 |
+
|
692 |
+
if model_args.load_student_in_4bit:
|
693 |
+
quantization_config_student = BitsAndBytesConfig(
|
694 |
+
load_in_4bit=True,
|
695 |
+
bnb_4bit_compute_dtype=torch_dtype,
|
696 |
+
bnb_4bit_quant_type=model_args.bnb_4bit_quant_type,
|
697 |
+
bnb_4bit_use_double_quant=model_args.use_bnb_nested_quant,
|
698 |
+
)
|
699 |
+
elif model_args.load_student_in_8bit:
|
700 |
+
quantization_config_student = BitsAndBytesConfig(load_in_8bit=True)
|
701 |
+
else:
|
702 |
+
quantization_config_student = None
|
703 |
+
|
704 |
+
return quantization_config_teacher, quantization_config_student
|
705 |
+
|
706 |
+
|
707 |
+
def main():
|
708 |
+
# 1. Parse input arguments
|
709 |
+
# We keep distinct sets of args, for cleaner separation of model/data/training related args
|
710 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, DistillationTrainingArguments))
|
711 |
+
|
712 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
713 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
714 |
+
# let's parse it to get our arguments.
|
715 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
716 |
+
elif len(sys.argv) == 2 and sys.argv[1].endswith(".yaml"):
|
717 |
+
# If we pass only one argument to the script and it's the path to a yaml file,
|
718 |
+
# let's parse it to get our arguments.
|
719 |
+
model_args, data_args, training_args = parser.parse_yaml_file(yaml_file=os.path.abspath(sys.argv[1]))
|
720 |
+
else:
|
721 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
722 |
+
|
723 |
+
# 2. Initialize the accelerator
|
724 |
+
# We will let the accelerator handle device placement for us in this example
|
725 |
+
# We simply have to specify the training precision and any trackers being used
|
726 |
+
# We'll use the same dtype arguments as our JAX/Flax training script and convert
|
727 |
+
# it to accelerate format
|
728 |
+
if training_args.dtype == "float16":
|
729 |
+
mixed_precision = "fp16"
|
730 |
+
teacher_dtype = torch.float16
|
731 |
+
elif training_args.dtype == "bfloat16":
|
732 |
+
mixed_precision = "bf16"
|
733 |
+
teacher_dtype = torch.bfloat16
|
734 |
+
else:
|
735 |
+
mixed_precision = "no"
|
736 |
+
teacher_dtype = torch.float32
|
737 |
+
|
738 |
+
accelerator = Accelerator(
|
739 |
+
gradient_accumulation_steps=training_args.gradient_accumulation_steps,
|
740 |
+
mixed_precision=mixed_precision,
|
741 |
+
log_with=training_args.report_to,
|
742 |
+
project_dir=training_args.output_dir,
|
743 |
+
)
|
744 |
+
|
745 |
+
accelerator.init_trackers(project_name=data_args.wandb_project)
|
746 |
+
|
747 |
+
# 3. Set-up basic logging
|
748 |
+
# Create one log on every process with the configuration for debugging
|
749 |
+
logging.basicConfig(
|
750 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
751 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
752 |
+
level=logging.INFO,
|
753 |
+
)
|
754 |
+
# Log a small summary on each proces
|
755 |
+
logger.warning(
|
756 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
|
757 |
+
f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
|
758 |
+
)
|
759 |
+
|
760 |
+
# Set the verbosity to info of the Transformers logger (on main process only)
|
761 |
+
if accelerator.is_local_main_process:
|
762 |
+
datasets.utils.logging.set_verbosity_warning()
|
763 |
+
transformers.utils.logging.set_verbosity_info()
|
764 |
+
else:
|
765 |
+
datasets.utils.logging.set_verbosity_error()
|
766 |
+
transformers.utils.logging.set_verbosity_error()
|
767 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
768 |
+
|
769 |
+
# 4. Detecting last checkpoint and eventually continue from last checkpoint
|
770 |
+
last_checkpoint = None
|
771 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
772 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
773 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
774 |
+
raise ValueError(
|
775 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
776 |
+
"Use --overwrite_output_dir to overcome."
|
777 |
+
)
|
778 |
+
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
779 |
+
logger.info(
|
780 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
781 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
782 |
+
)
|
783 |
+
|
784 |
+
# 5. Handle the repository creation
|
785 |
+
if accelerator.is_main_process:
|
786 |
+
if training_args.push_to_hub:
|
787 |
+
if training_args.hub_model_id is None:
|
788 |
+
repo_name = get_full_repo_name(
|
789 |
+
Path(training_args.output_dir).absolute().name,
|
790 |
+
token=training_args.hub_token,
|
791 |
+
)
|
792 |
+
else:
|
793 |
+
repo_name = training_args.hub_model_id
|
794 |
+
create_repo(repo_name, exist_ok=True, token=training_args.hub_token)
|
795 |
+
|
796 |
+
with open(os.path.join(training_args.output_dir, ".gitignore"), "w+") as gitignore:
|
797 |
+
if "wandb" not in gitignore:
|
798 |
+
gitignore.write("wandb\n")
|
799 |
+
elif training_args.output_dir is not None:
|
800 |
+
os.makedirs(training_args.output_dir, exist_ok=True)
|
801 |
+
accelerator.wait_for_everyone()
|
802 |
+
|
803 |
+
# 6. Load dataset - either streaming or non-streaming (offline)
|
804 |
+
raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
|
805 |
+
|
806 |
+
# set seed for determinism
|
807 |
+
set_seed(training_args.seed)
|
808 |
+
|
809 |
+
if training_args.do_train:
|
810 |
+
raw_datasets["train"] = load_multiple_datasets(
|
811 |
+
data_args.train_dataset_name,
|
812 |
+
data_args.train_dataset_config_name,
|
813 |
+
splits=data_args.train_split_name,
|
814 |
+
text_column_names=data_args.text_column_name,
|
815 |
+
prompt_column_names=data_args.prompt_column_name,
|
816 |
+
streaming=data_args.streaming,
|
817 |
+
dataset_samples=data_args.train_dataset_samples,
|
818 |
+
seed=training_args.seed,
|
819 |
+
accelerator=accelerator,
|
820 |
+
cache_dir=data_args.dataset_cache_dir,
|
821 |
+
token=model_args.token,
|
822 |
+
)
|
823 |
+
raw_datasets_train_features = set(raw_datasets["train"].features.keys())
|
824 |
+
|
825 |
+
if training_args.do_eval:
|
826 |
+
dataset_names_dict = convert_dataset_str_to_list(
|
827 |
+
data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name,
|
828 |
+
(
|
829 |
+
data_args.eval_dataset_config_name
|
830 |
+
if data_args.eval_dataset_config_name
|
831 |
+
else data_args.train_dataset_config_name
|
832 |
+
),
|
833 |
+
splits=data_args.eval_split_name,
|
834 |
+
text_column_names=data_args.eval_text_column_name,
|
835 |
+
prompt_column_names=data_args.eval_prompt_column_name,
|
836 |
+
)
|
837 |
+
all_eval_splits = []
|
838 |
+
if len(dataset_names_dict) == 1:
|
839 |
+
# load a single eval set
|
840 |
+
dataset_dict = dataset_names_dict[0]
|
841 |
+
all_eval_splits.append("eval")
|
842 |
+
raw_datasets["eval"] = load_dataset(
|
843 |
+
dataset_dict["name"],
|
844 |
+
dataset_dict["config"],
|
845 |
+
split=dataset_dict["split"],
|
846 |
+
cache_dir=data_args.dataset_cache_dir,
|
847 |
+
token=model_args.token,
|
848 |
+
streaming=data_args.streaming,
|
849 |
+
)
|
850 |
+
if dataset_dict["text_column_name"] != "text":
|
851 |
+
raw_datasets["eval"] = raw_datasets["eval"].rename_column(data_args.eval_text_column_name, "text")
|
852 |
+
if dataset_dict["prompt_column_name"] != "prompt":
|
853 |
+
raw_datasets["eval"] = raw_datasets["eval"].rename_column(data_args.eval_prompt_column_name, "prompt")
|
854 |
+
else:
|
855 |
+
# load multiple eval sets
|
856 |
+
for dataset_dict in dataset_names_dict:
|
857 |
+
pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['config'].replace('.', '-')}"
|
858 |
+
all_eval_splits.append(pretty_name)
|
859 |
+
raw_datasets[pretty_name] = load_dataset(
|
860 |
+
dataset_dict["name"],
|
861 |
+
dataset_dict["config"],
|
862 |
+
split=dataset_dict["split"],
|
863 |
+
cache_dir=data_args.dataset_cache_dir,
|
864 |
+
token=model_args.token,
|
865 |
+
streaming=data_args.streaming,
|
866 |
+
)
|
867 |
+
# make column names consistent (text, audio)
|
868 |
+
if dataset_dict["text_column_name"] != "text":
|
869 |
+
raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column(
|
870 |
+
dataset_dict["text_column_name"], "text"
|
871 |
+
)
|
872 |
+
if dataset_dict["prompt_column_name"] != "prompt":
|
873 |
+
raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column(
|
874 |
+
dataset_dict["prompt_column_name"], "prompt"
|
875 |
+
)
|
876 |
+
raw_datasets[pretty_name] = raw_datasets[pretty_name].remove_columns(
|
877 |
+
set(raw_datasets[pretty_name].features.keys()) - {"text", "prompt"}
|
878 |
+
)
|
879 |
+
|
880 |
+
if not training_args.do_train and not training_args.do_eval:
|
881 |
+
raise ValueError(
|
882 |
+
"Cannot not train and not do evaluation. At least one of training or evaluation has to be performed."
|
883 |
+
)
|
884 |
+
|
885 |
+
# 7. Load pretrained model, tokenizer, and feature extractor
|
886 |
+
config = AutoConfig.from_pretrained(
|
887 |
+
(model_args.config_name if model_args.config_name else model_args.model_name_or_path),
|
888 |
+
cache_dir=model_args.cache_dir,
|
889 |
+
revision=model_args.model_revision,
|
890 |
+
token=model_args.token,
|
891 |
+
)
|
892 |
+
if training_args.output_router_logits:
|
893 |
+
config.output_router_logits = True
|
894 |
+
|
895 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
896 |
+
(model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path),
|
897 |
+
cache_dir=model_args.cache_dir,
|
898 |
+
use_fast=model_args.use_fast_tokenizer,
|
899 |
+
revision=model_args.model_revision,
|
900 |
+
token=model_args.token,
|
901 |
+
)
|
902 |
+
if tokenizer.pad_token_id is None:
|
903 |
+
tokenizer.pad_token = tokenizer.eos_token
|
904 |
+
|
905 |
+
quantization_config_teacher, quantization_config_student = get_quantization_config(
|
906 |
+
model_args, torch_dtype=teacher_dtype
|
907 |
+
)
|
908 |
+
|
909 |
+
# The teacher model can safely be cast to the dtype of training since we don't
|
910 |
+
# update the params
|
911 |
+
teacher_model = AutoModelForCausalLM.from_pretrained(
|
912 |
+
model_args.teacher_model_name_or_path,
|
913 |
+
cache_dir=model_args.cache_dir,
|
914 |
+
token=model_args.token,
|
915 |
+
low_cpu_mem_usage=True,
|
916 |
+
torch_dtype=teacher_dtype,
|
917 |
+
attn_implementation=model_args.attn_implementation,
|
918 |
+
quantization_config=quantization_config_teacher,
|
919 |
+
)
|
920 |
+
|
921 |
+
student_model = AutoModelForCausalLM.from_pretrained(
|
922 |
+
model_args.model_name_or_path,
|
923 |
+
config=config,
|
924 |
+
cache_dir=model_args.cache_dir,
|
925 |
+
revision=model_args.model_revision,
|
926 |
+
subfolder=model_args.subfolder,
|
927 |
+
token=model_args.token,
|
928 |
+
torch_dtype=teacher_dtype,
|
929 |
+
low_cpu_mem_usage=True,
|
930 |
+
attn_implementation=model_args.attn_implementation,
|
931 |
+
quantization_config=quantization_config_student,
|
932 |
+
)
|
933 |
+
|
934 |
+
if quantization_config_student is not None:
|
935 |
+
lora_config = LoraConfig(
|
936 |
+
r=model_args.lora_r,
|
937 |
+
lora_alpha=model_args.lora_alpha,
|
938 |
+
target_modules=model_args.lora_target_modules,
|
939 |
+
lora_dropout=model_args.lora_dropout,
|
940 |
+
bias="none",
|
941 |
+
task_type="CAUSAL_LM",
|
942 |
+
)
|
943 |
+
student_model = get_peft_model(student_model, lora_config)
|
944 |
+
|
945 |
+
if student_model.generation_config.bos_token_id is None or teacher_model.generation_config.bos_token_id is None:
|
946 |
+
raise ValueError(
|
947 |
+
f"Make sure that `generation_config.bos_token_id` is correctly defined for both the "
|
948 |
+
f"student and teacher model. Got {student_model.generation_config.bos_token_id} for the "
|
949 |
+
f"student and {teacher_model.generation_config.bos_token_id} for the teacher."
|
950 |
+
)
|
951 |
+
|
952 |
+
# enable gradient checkpointing if necessary
|
953 |
+
if training_args.gradient_checkpointing:
|
954 |
+
student_model.gradient_checkpointing_enable()
|
955 |
+
|
956 |
+
def set_trainable_parameters(module, requires_grad=False):
|
957 |
+
for param in module.parameters():
|
958 |
+
param.requires_grad = requires_grad
|
959 |
+
module._requires_grad = requires_grad
|
960 |
+
|
961 |
+
# freeze student lm head if necessary
|
962 |
+
if training_args.freeze_lm_head:
|
963 |
+
set_trainable_parameters(student_model.lm_head, requires_grad=False)
|
964 |
+
# TODO(SG): possibly upgrade this to an error
|
965 |
+
if training_args.gradient_checkpointing:
|
966 |
+
logger.warning(
|
967 |
+
"Freezing the LM head is not compatible with gradient checkpointing. Set `--gradient_checkpointing=False`, "
|
968 |
+
"or un-freeze the LM head with `--freeze_lm_head=False`. Overriding gradient checkpointing to False."
|
969 |
+
)
|
970 |
+
|
971 |
+
student_model.generation_config.max_length = data_args.max_label_length
|
972 |
+
|
973 |
+
# 8. Save all pre-processed tokenizers/config/generation configs
|
974 |
+
if accelerator.is_main_process:
|
975 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
976 |
+
# save the config and generation config as well
|
977 |
+
config.save_pretrained(training_args.output_dir)
|
978 |
+
student_model.generation_config.save_pretrained(training_args.output_dir)
|
979 |
+
|
980 |
+
accelerator.wait_for_everyone()
|
981 |
+
|
982 |
+
|
983 |
+
# 10. Preprocessing the datasets: we need to combine the prompt and generations and tokenize the targets.
|
984 |
+
# 10.1: Define the pre-processing constants
|
985 |
+
max_label_length = (
|
986 |
+
data_args.max_label_length if data_args.max_label_length is not None else config.max_length
|
987 |
+
)
|
988 |
+
num_workers = data_args.preprocessing_num_workers
|
989 |
+
dataloader_num_workers = training_args.dataloader_num_workers
|
990 |
+
prefetch_factor = training_args.dataloader_prefetch_factor
|
991 |
+
eos_token_id = tokenizer.eos_token_id
|
992 |
+
|
993 |
+
# 10.2: filter based on maximum number of training/evaluation samples
|
994 |
+
if training_args.do_train and data_args.max_train_samples is not None:
|
995 |
+
raw_datasets["train"] = (
|
996 |
+
raw_datasets["train"].take(data_args.max_train_samples)
|
997 |
+
if data_args.streaming
|
998 |
+
else raw_datasets["train"].select(range(data_args.max_train_samples))
|
999 |
+
)
|
1000 |
+
|
1001 |
+
if training_args.do_eval and data_args.max_eval_samples is not None:
|
1002 |
+
for eval_split in all_eval_splits:
|
1003 |
+
raw_datasets[eval_split] = (
|
1004 |
+
raw_datasets[eval_split].take(data_args.max_eval_samples)
|
1005 |
+
if data_args.streaming
|
1006 |
+
else raw_datasets[eval_split].select(range(data_args.max_eval_samples))
|
1007 |
+
)
|
1008 |
+
|
1009 |
+
# 10.3: pre-process training/evaluation datasets
|
1010 |
+
def prepare_datasets(example):
|
1011 |
+
prompt_ids = tokenizer(example["prompt"]).input_ids
|
1012 |
+
gen_ids = tokenizer(example["text"], add_special_tokens=False).input_ids + [eos_token_id]
|
1013 |
+
if prompt_ids[-1] == eos_token_id:
|
1014 |
+
prompt_ids = prompt_ids[:-1]
|
1015 |
+
example["labels"] = prompt_ids + gen_ids
|
1016 |
+
example["prompt_length"] = len(prompt_ids)
|
1017 |
+
return example
|
1018 |
+
|
1019 |
+
vectorized_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
|
1020 |
+
if training_args.do_train:
|
1021 |
+
# with streaming mode we can only have 1 worker, whereas with non-streaming
|
1022 |
+
# we can use `num_workers` (which is much faster)
|
1023 |
+
# We gate the pre-processing function accordingly
|
1024 |
+
map_fn_train = partial(
|
1025 |
+
raw_datasets["train"].map,
|
1026 |
+
function=prepare_datasets,
|
1027 |
+
remove_columns=raw_datasets_train_features,
|
1028 |
+
)
|
1029 |
+
with accelerator.main_process_first():
|
1030 |
+
vectorized_datasets["train"] = (
|
1031 |
+
map_fn_train(num_proc=num_workers, desc="preprocess train dataset")
|
1032 |
+
if not data_args.streaming
|
1033 |
+
else map_fn_train()
|
1034 |
+
)
|
1035 |
+
if training_args.do_eval:
|
1036 |
+
for eval_split in all_eval_splits:
|
1037 |
+
raw_datasets_eval_features = list(raw_datasets[eval_split].features.keys())
|
1038 |
+
map_fn_eval = partial(
|
1039 |
+
raw_datasets[eval_split].map, function=prepare_datasets, remove_columns=raw_datasets_eval_features
|
1040 |
+
)
|
1041 |
+
with accelerator.main_process_first():
|
1042 |
+
vectorized_datasets[eval_split] = (
|
1043 |
+
map_fn_eval(num_proc=num_workers, desc="preprocess eval dataset")
|
1044 |
+
if not data_args.streaming
|
1045 |
+
else map_fn_eval()
|
1046 |
+
)
|
1047 |
+
|
1048 |
+
# 10.4: Filter training data with labels longer than `max_label_length`
|
1049 |
+
def is_labels_in_length_range(labels):
|
1050 |
+
return 0 < len(labels) <= max_label_length
|
1051 |
+
|
1052 |
+
filter_by_labels_fn = partial(
|
1053 |
+
vectorized_datasets.filter, function=is_labels_in_length_range, input_columns=["labels"]
|
1054 |
+
)
|
1055 |
+
with accelerator.main_process_first():
|
1056 |
+
vectorized_datasets = (
|
1057 |
+
filter_by_labels_fn(num_proc=num_workers, desc="filtering train dataset")
|
1058 |
+
if not data_args.streaming
|
1059 |
+
else filter_by_labels_fn()
|
1060 |
+
)
|
1061 |
+
|
1062 |
+
# Pre-processing complete!
|
1063 |
+
# For large datasets it is advised to run the preprocessing on a
|
1064 |
+
# single machine first with `--preprocessing_only` since there will mostly likely
|
1065 |
+
# be a timeout when running the script in distributed mode.
|
1066 |
+
# In a second step, `--preprocessing_only` can then be set to `False` to load the
|
1067 |
+
# cached dataset
|
1068 |
+
if data_args.preprocessing_only:
|
1069 |
+
if data_args.streaming:
|
1070 |
+
raise ValueError(
|
1071 |
+
"When using streaming mode, dataset pre-processing is performed on the fly, hence there is no notion"
|
1072 |
+
"of a cached pre-processed dataset. Remove the argument `--preprocessing_only` to run pre-processing "
|
1073 |
+
"on the fly with streaming mode."
|
1074 |
+
)
|
1075 |
+
cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
|
1076 |
+
logger.info(f"Data preprocessing finished. Files cached at {cache}.")
|
1077 |
+
return
|
1078 |
+
|
1079 |
+
# 11. Define Evaluation Metrics
|
1080 |
+
def compute_metrics(preds, labels):
|
1081 |
+
# TODO(SG): better metrics for performance?
|
1082 |
+
# replace padded labels by the padding token
|
1083 |
+
for idx in range(len(labels)):
|
1084 |
+
labels[idx][labels[idx] == -100] = tokenizer.pad_token_id
|
1085 |
+
pred_str = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
1086 |
+
label_str = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
1087 |
+
return pred_str, label_str
|
1088 |
+
|
1089 |
+
# 12. Define Training Schedule
|
1090 |
+
# 12.1: Store some constants
|
1091 |
+
per_device_train_batch_size = int(training_args.per_device_train_batch_size)
|
1092 |
+
train_batch_size = per_device_train_batch_size * accelerator.num_processes
|
1093 |
+
gradient_accumulation_steps = int(training_args.gradient_accumulation_steps)
|
1094 |
+
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
|
1095 |
+
|
1096 |
+
# 12.2: Set max training steps
|
1097 |
+
if not data_args.streaming and training_args.max_steps < 0:
|
1098 |
+
num_epochs = int(training_args.num_train_epochs)
|
1099 |
+
steps_per_epoch = len(vectorized_datasets["train"]) // (train_batch_size * gradient_accumulation_steps)
|
1100 |
+
total_train_steps = steps_per_epoch * num_epochs
|
1101 |
+
elif training_args.max_steps > 0:
|
1102 |
+
logger.info("max_steps is given, it will override any value given in num_train_epochs")
|
1103 |
+
total_train_steps = int(training_args.max_steps)
|
1104 |
+
if not data_args.streaming:
|
1105 |
+
steps_per_epoch = len(vectorized_datasets["train"]) // (train_batch_size * gradient_accumulation_steps)
|
1106 |
+
num_epochs = int(np.ceil(total_train_steps / steps_per_epoch))
|
1107 |
+
else:
|
1108 |
+
# Setting a very large number of epochs so we go as many times as necessary over the iterator.
|
1109 |
+
num_epochs = sys.maxsize
|
1110 |
+
steps_per_epoch = total_train_steps
|
1111 |
+
else:
|
1112 |
+
raise ValueError("max_steps must be specified when training with a streaming (iterable) dataset")
|
1113 |
+
|
1114 |
+
# 12.3: Set evaluation steps
|
1115 |
+
if training_args.evaluation_strategy == "epoch":
|
1116 |
+
eval_steps = steps_per_epoch
|
1117 |
+
elif training_args.eval_steps is None:
|
1118 |
+
logger.info(
|
1119 |
+
f"eval_steps is not set, evaluating at the end of {'each epoch' if not data_args.streaming else 'training'}"
|
1120 |
+
)
|
1121 |
+
eval_steps = steps_per_epoch
|
1122 |
+
else:
|
1123 |
+
eval_steps = training_args.eval_steps
|
1124 |
+
|
1125 |
+
# 12.4: Set save steps
|
1126 |
+
if training_args.save_strategy == "epoch":
|
1127 |
+
save_steps = steps_per_epoch
|
1128 |
+
elif training_args.save_strategy == "steps":
|
1129 |
+
save_steps = training_args.save_steps
|
1130 |
+
else:
|
1131 |
+
save_steps = sys.maxsize
|
1132 |
+
|
1133 |
+
# 13. Define optimizer, LR scheduler, collator
|
1134 |
+
decay_parameters = get_parameter_names(
|
1135 |
+
student_model,
|
1136 |
+
[nn.LayerNorm],
|
1137 |
+
)
|
1138 |
+
decay_parameters = [name for name in decay_parameters if "bias" not in name]
|
1139 |
+
optimizer_grouped_parameters = [
|
1140 |
+
{
|
1141 |
+
"params": [param for name, param in student_model.named_parameters() if name in decay_parameters],
|
1142 |
+
"weight_decay": training_args.weight_decay,
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"params": [param for name, param in student_model.named_parameters() if name not in decay_parameters],
|
1146 |
+
"weight_decay": 0.0,
|
1147 |
+
},
|
1148 |
+
]
|
1149 |
+
optimizer = torch.optim.AdamW(
|
1150 |
+
params=optimizer_grouped_parameters,
|
1151 |
+
lr=training_args.learning_rate,
|
1152 |
+
betas=(training_args.adam_beta1, training_args.adam_beta2),
|
1153 |
+
eps=training_args.adam_epsilon,
|
1154 |
+
)
|
1155 |
+
|
1156 |
+
# LR scheduler gets stepped by `num_processes` each time -> account for this in warmup / total steps
|
1157 |
+
lr_scheduler = get_scheduler(
|
1158 |
+
name=training_args.lr_scheduler_type,
|
1159 |
+
optimizer=optimizer,
|
1160 |
+
num_warmup_steps=training_args.warmup_steps * accelerator.num_processes,
|
1161 |
+
num_training_steps=total_train_steps * accelerator.num_processes,
|
1162 |
+
)
|
1163 |
+
|
1164 |
+
data_collator = DataCollatorCausalLMWithPadding(
|
1165 |
+
tokenizer=tokenizer,
|
1166 |
+
target_padding="max_length",
|
1167 |
+
max_target_length=max_label_length,
|
1168 |
+
)
|
1169 |
+
|
1170 |
+
# 14. Define generation arguments - we need to do this before we wrap the models in DDP
|
1171 |
+
# so that we can still access the configs
|
1172 |
+
num_beams = (
|
1173 |
+
training_args.generation_num_beams
|
1174 |
+
if training_args.generation_num_beams is not None
|
1175 |
+
else getattr(student_model.generation_config, "num_beams", 1)
|
1176 |
+
)
|
1177 |
+
|
1178 |
+
# 15. Prepare everything with accelerate
|
1179 |
+
student_model, teacher_model, optimizer, lr_scheduler = accelerator.prepare(
|
1180 |
+
student_model, teacher_model, optimizer, lr_scheduler
|
1181 |
+
)
|
1182 |
+
|
1183 |
+
def kl_divergence(target_distribution, log_predicted_distribution, labels):
|
1184 |
+
kl_loss = nn.KLDivLoss(reduction="none")
|
1185 |
+
divergence = kl_loss(log_predicted_distribution, target_distribution)
|
1186 |
+
# ignore padded tokens from divergence, i.e. where labels are not set to -100
|
1187 |
+
padding_mask = labels >= 0
|
1188 |
+
padding_mask = padding_mask.unsqueeze(-1)
|
1189 |
+
divergence = divergence * padding_mask
|
1190 |
+
# take the average over the mini-batch
|
1191 |
+
divergence = divergence.sum() / padding_mask.sum()
|
1192 |
+
return divergence
|
1193 |
+
|
1194 |
+
# Define gradient update step fn
|
1195 |
+
def train_step(
|
1196 |
+
batch,
|
1197 |
+
temperature=2.0,
|
1198 |
+
):
|
1199 |
+
student_model.train()
|
1200 |
+
teacher_model.eval()
|
1201 |
+
|
1202 |
+
student_outputs = student_model(**batch)
|
1203 |
+
with torch.no_grad():
|
1204 |
+
teacher_outputs = teacher_model(**batch)
|
1205 |
+
|
1206 |
+
# CE (data) loss
|
1207 |
+
ce_loss = student_outputs.loss
|
1208 |
+
# rescale distribution by temperature to ensure gradients scale correctly
|
1209 |
+
teacher_distribution = nn.functional.softmax(teacher_outputs.logits / temperature, dim=-1)
|
1210 |
+
# log softmax of student predictions for numerical stability
|
1211 |
+
student_distribution = nn.functional.log_softmax(student_outputs.logits / temperature, dim=-1)
|
1212 |
+
# KL-divergence loss (scaled by temperature)
|
1213 |
+
kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"]) * temperature**2
|
1214 |
+
|
1215 |
+
# use Distil-Whisper formulation (fix weight of CE loss and tune KL weight)
|
1216 |
+
loss = 0.8 * ce_loss + training_args.kl_weight * kl_loss
|
1217 |
+
metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss}
|
1218 |
+
return loss, metrics
|
1219 |
+
|
1220 |
+
# Define eval fn
|
1221 |
+
def eval_step(batch):
|
1222 |
+
student_model.eval()
|
1223 |
+
teacher_model.eval()
|
1224 |
+
|
1225 |
+
with torch.no_grad():
|
1226 |
+
student_outputs = student_model(**batch)
|
1227 |
+
teacher_outputs = teacher_model(**batch)
|
1228 |
+
|
1229 |
+
# CE (data) loss
|
1230 |
+
ce_loss = student_outputs.loss
|
1231 |
+
|
1232 |
+
# log softmax / softmax for numerical stability
|
1233 |
+
student_distribution = nn.functional.log_softmax(student_outputs.logits, dim=-1)
|
1234 |
+
teacher_distribution = nn.functional.softmax(teacher_outputs.logits, dim=-1)
|
1235 |
+
# temperature is always 1 for eval
|
1236 |
+
kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"])
|
1237 |
+
|
1238 |
+
# use Distil-Whisper formulation (fix weight of CE loss and tune KL weight)
|
1239 |
+
loss = 0.8 * ce_loss + training_args.kl_weight * kl_loss
|
1240 |
+
metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss}
|
1241 |
+
return metrics
|
1242 |
+
|
1243 |
+
def generate_step(batch):
|
1244 |
+
student_model.eval()
|
1245 |
+
output_ids = accelerator.unwrap_model(student_model).generate(
|
1246 |
+
**batch, max_length=max_label_length, num_beams=num_beams
|
1247 |
+
)
|
1248 |
+
output_ids = accelerator.pad_across_processes(output_ids, dim=1, pad_index=tokenizer.pad_token_id)
|
1249 |
+
return output_ids
|
1250 |
+
|
1251 |
+
logger.info("***** Running training *****")
|
1252 |
+
logger.info(f" Num examples = {total_train_steps * train_batch_size * gradient_accumulation_steps}")
|
1253 |
+
if not data_args.streaming:
|
1254 |
+
logger.info(f" Num epochs = {num_epochs}")
|
1255 |
+
logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_train_batch_size}")
|
1256 |
+
logger.info(" Gradient accumulation steps =" f" {gradient_accumulation_steps}")
|
1257 |
+
logger.info(
|
1258 |
+
f" Total train batch size (w. parallel & distributed) = {train_batch_size * gradient_accumulation_steps}"
|
1259 |
+
)
|
1260 |
+
logger.info(f" Total optimization steps = {total_train_steps}")
|
1261 |
+
|
1262 |
+
# ======================== Training ================================
|
1263 |
+
train_time = 0
|
1264 |
+
train_start = time.time()
|
1265 |
+
steps_trained_progress_bar = tqdm(
|
1266 |
+
range(total_train_steps), desc="Train steps ... ", position=0, disable=not accelerator.is_local_main_process
|
1267 |
+
)
|
1268 |
+
continue_training = True
|
1269 |
+
epochs_trained = 0
|
1270 |
+
cur_step = 0
|
1271 |
+
|
1272 |
+
checkpoint = None
|
1273 |
+
if training_args.resume_from_checkpoint is not None:
|
1274 |
+
checkpoint = training_args.resume_from_checkpoint
|
1275 |
+
elif last_checkpoint is not None:
|
1276 |
+
checkpoint = last_checkpoint
|
1277 |
+
|
1278 |
+
if checkpoint is not None:
|
1279 |
+
accelerator.load_state(checkpoint)
|
1280 |
+
# Find num steps and epoch from saved state string pattern
|
1281 |
+
pattern = r"checkpoint-(\d+)-epoch-(\d+)"
|
1282 |
+
match = re.search(pattern, checkpoint)
|
1283 |
+
cur_step = int(match.group(1))
|
1284 |
+
epochs_trained = int(match.group(2))
|
1285 |
+
|
1286 |
+
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
|
1287 |
+
logger.info(f" Continuing training from epoch {epochs_trained}")
|
1288 |
+
logger.info(f" Continuing training from global step {cur_step}")
|
1289 |
+
|
1290 |
+
steps_trained_progress_bar.update(cur_step)
|
1291 |
+
|
1292 |
+
for epoch in range(0, epochs_trained):
|
1293 |
+
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
|
1294 |
+
|
1295 |
+
if not data_args.streaming and training_args.max_steps < 0:
|
1296 |
+
# we know exactly the number of steps per epoch, so can skip through the required number of batches
|
1297 |
+
resume_step = (cur_step - epochs_trained * steps_per_epoch) * gradient_accumulation_steps
|
1298 |
+
else:
|
1299 |
+
# Currently we don't know how many steps we've taken in the current epoch
|
1300 |
+
# So we just shuffle the dataset one extra time and start from a fresh epoch
|
1301 |
+
# This is "good enough" for our purposes but not fully correct
|
1302 |
+
resume_step = None
|
1303 |
+
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
|
1304 |
+
else:
|
1305 |
+
resume_step = None
|
1306 |
+
|
1307 |
+
for epoch in range(epochs_trained, num_epochs):
|
1308 |
+
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
|
1309 |
+
train_dataloader = DataLoader(
|
1310 |
+
vectorized_datasets["train"],
|
1311 |
+
collate_fn=data_collator,
|
1312 |
+
batch_size=per_device_train_batch_size,
|
1313 |
+
num_workers=dataloader_num_workers,
|
1314 |
+
prefetch_factor=prefetch_factor,
|
1315 |
+
pin_memory=training_args.dataloader_pin_memory,
|
1316 |
+
)
|
1317 |
+
train_dataloader = accelerator.prepare(train_dataloader)
|
1318 |
+
if hasattr(train_dataloader, "dataset") and isinstance(train_dataloader.dataset, IterableDataset):
|
1319 |
+
train_dataloader.dataset.set_epoch(epoch)
|
1320 |
+
|
1321 |
+
if resume_step is not None:
|
1322 |
+
# Skip the first N batches in the dataloader when resuming from a checkpoint
|
1323 |
+
train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
|
1324 |
+
resume_step = None
|
1325 |
+
|
1326 |
+
for batch in train_dataloader:
|
1327 |
+
with accelerator.accumulate(student_model):
|
1328 |
+
loss, train_metric = train_step(batch, temperature=training_args.temperature)
|
1329 |
+
accelerator.backward(loss)
|
1330 |
+
if accelerator.sync_gradients:
|
1331 |
+
accelerator.clip_grad_norm_(student_model.parameters(), training_args.max_grad_norm)
|
1332 |
+
optimizer.step()
|
1333 |
+
lr_scheduler.step()
|
1334 |
+
optimizer.zero_grad()
|
1335 |
+
|
1336 |
+
# Check if the accelerator has performed an optimization step behind the scenes
|
1337 |
+
if accelerator.sync_gradients:
|
1338 |
+
steps_trained_progress_bar.update(1)
|
1339 |
+
cur_step += 1
|
1340 |
+
|
1341 |
+
if cur_step % training_args.logging_steps == 0:
|
1342 |
+
steps_trained_progress_bar.write(
|
1343 |
+
f"Step... ({cur_step} / {total_train_steps} | Loss:"
|
1344 |
+
f" {train_metric['loss']}, Learning Rate:"
|
1345 |
+
f" {lr_scheduler.get_last_lr()[0]})"
|
1346 |
+
)
|
1347 |
+
log_metric(
|
1348 |
+
accelerator,
|
1349 |
+
metrics=train_metric,
|
1350 |
+
learning_rate=lr_scheduler.get_last_lr()[0],
|
1351 |
+
train_time=train_time + time.time() - train_start,
|
1352 |
+
step=cur_step,
|
1353 |
+
epoch=epoch,
|
1354 |
+
prefix="train",
|
1355 |
+
)
|
1356 |
+
|
1357 |
+
# save checkpoint and weights after each save_steps and at the end of training
|
1358 |
+
if (cur_step % save_steps == 0) or cur_step == total_train_steps:
|
1359 |
+
intermediate_dir = os.path.join(training_args.output_dir, f"checkpoint-{cur_step}-epoch-{epoch}")
|
1360 |
+
accelerator.save_state(output_dir=intermediate_dir)
|
1361 |
+
accelerator.wait_for_everyone()
|
1362 |
+
if accelerator.is_main_process:
|
1363 |
+
rotate_checkpoints(training_args.save_total_limit, output_dir=training_args.output_dir)
|
1364 |
+
if training_args.push_to_hub:
|
1365 |
+
upload_folder(
|
1366 |
+
folder_path=training_args.output_dir,
|
1367 |
+
repo_id=repo_name,
|
1368 |
+
repo_type="model",
|
1369 |
+
commit_message=f"Saving train state of step {cur_step}",
|
1370 |
+
)
|
1371 |
+
|
1372 |
+
if training_args.do_eval and (cur_step % eval_steps == 0 or cur_step == total_train_steps):
|
1373 |
+
train_time += time.time() - train_start
|
1374 |
+
student_model.eval()
|
1375 |
+
# ======================== Evaluating ==============================
|
1376 |
+
for eval_split in all_eval_splits:
|
1377 |
+
eval_metrics = []
|
1378 |
+
eval_preds = []
|
1379 |
+
eval_labels = []
|
1380 |
+
eval_start = time.time()
|
1381 |
+
|
1382 |
+
validation_dataloader = DataLoader(
|
1383 |
+
vectorized_datasets[eval_split],
|
1384 |
+
collate_fn=data_collator,
|
1385 |
+
batch_size=per_device_eval_batch_size,
|
1386 |
+
drop_last=False,
|
1387 |
+
num_workers=dataloader_num_workers,
|
1388 |
+
prefetch_factor=prefetch_factor,
|
1389 |
+
pin_memory=training_args.dataloader_pin_memory,
|
1390 |
+
)
|
1391 |
+
validation_dataloader = accelerator.prepare(validation_dataloader)
|
1392 |
+
|
1393 |
+
for batch in tqdm(
|
1394 |
+
validation_dataloader,
|
1395 |
+
desc=f"Evaluating {eval_split}...",
|
1396 |
+
position=2,
|
1397 |
+
disable=not accelerator.is_local_main_process,
|
1398 |
+
):
|
1399 |
+
# Model forward
|
1400 |
+
eval_metric = eval_step(batch)
|
1401 |
+
eval_metric = accelerator.gather_for_metrics(eval_metric)
|
1402 |
+
eval_metrics.append(eval_metric)
|
1403 |
+
|
1404 |
+
# generation
|
1405 |
+
if training_args.predict_with_generate:
|
1406 |
+
generated_ids = generate_step(batch)
|
1407 |
+
# Gather all predictions and targets
|
1408 |
+
generated_ids, labels = accelerator.gather_for_metrics(
|
1409 |
+
(generated_ids, batch["labels"])
|
1410 |
+
)
|
1411 |
+
eval_preds.extend(generated_ids)
|
1412 |
+
eval_labels.extend(labels)
|
1413 |
+
|
1414 |
+
eval_time = time.time() - eval_start
|
1415 |
+
# normalize eval metrics
|
1416 |
+
eval_metrics = {
|
1417 |
+
key: torch.mean(torch.stack([d[key] for d in eval_metrics])) for key in eval_metrics[0]
|
1418 |
+
}
|
1419 |
+
try:
|
1420 |
+
eval_metrics["perplexity"] = math.exp(eval_metrics["ce_loss"])
|
1421 |
+
except OverflowError:
|
1422 |
+
eval_metrics["perplexity"] = float("inf")
|
1423 |
+
|
1424 |
+
if training_args.predict_with_generate:
|
1425 |
+
pred_str, label_str = compute_metrics(eval_preds, eval_labels)
|
1426 |
+
log_pred(
|
1427 |
+
accelerator,
|
1428 |
+
pred_str,
|
1429 |
+
label_str,
|
1430 |
+
step=cur_step,
|
1431 |
+
epoch=epochs_trained,
|
1432 |
+
evaluation_strategy=training_args.evaluation_strategy,
|
1433 |
+
prefix=eval_split,
|
1434 |
+
)
|
1435 |
+
|
1436 |
+
# Print metrics and update progress bar
|
1437 |
+
logger_desc = " ".join([f"Eval {key}: {value} |" for key, value in eval_metrics.items()])
|
1438 |
+
steps_trained_progress_bar.write(
|
1439 |
+
f"Eval results for step ({cur_step} / {total_train_steps} | {logger_desc}"
|
1440 |
+
)
|
1441 |
+
|
1442 |
+
log_metric(
|
1443 |
+
accelerator,
|
1444 |
+
metrics=eval_metrics,
|
1445 |
+
train_time=eval_time,
|
1446 |
+
step=cur_step,
|
1447 |
+
epoch=epoch,
|
1448 |
+
prefix=eval_split,
|
1449 |
+
)
|
1450 |
+
|
1451 |
+
# flush the train metrics
|
1452 |
+
train_start = time.time()
|
1453 |
+
|
1454 |
+
# break condition
|
1455 |
+
if cur_step == total_train_steps:
|
1456 |
+
# un-wrap student model for save
|
1457 |
+
student_model = accelerator.unwrap_model(student_model)
|
1458 |
+
student_model.save_pretrained(training_args.output_dir)
|
1459 |
+
if training_args.push_to_hub:
|
1460 |
+
upload_folder(
|
1461 |
+
folder_path=training_args.output_dir,
|
1462 |
+
repo_id=repo_name,
|
1463 |
+
repo_type="model",
|
1464 |
+
commit_message=f"Saving final weights of step {cur_step}",
|
1465 |
+
)
|
1466 |
+
continue_training = False
|
1467 |
+
break
|
1468 |
+
|
1469 |
+
if not continue_training:
|
1470 |
+
break
|
1471 |
+
|
1472 |
+
accelerator.end_training()
|
1473 |
+
|
1474 |
+
|
1475 |
+
if __name__ == "__main__":
|
1476 |
+
main()
|
slurm_job.slurm
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=distil-mixtral
|
3 |
+
#SBATCH --nodes=1
|
4 |
+
# set 24h for job wall time limit
|
5 |
+
#SBATCH --time=4-0:00:00
|
6 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
7 |
+
#SBATCH --cpus-per-task=32
|
8 |
+
#SBATCH --gres=gpu:8
|
9 |
+
#SBATCH --exclusive
|
10 |
+
#SBATCH --partition=hopper-prod
|
11 |
+
#SBATCH --output=/fsx/sanchit/logs/%x-%j.out
|
12 |
+
|
13 |
+
set -x -e
|
14 |
+
|
15 |
+
source ~/.bashrc
|
16 |
+
conda activate venv
|
17 |
+
|
18 |
+
echo "START TIME: $(date)"
|
19 |
+
|
20 |
+
|
21 |
+
LOG_PATH="/fsx/sanchit/logs/main_log.txt"
|
22 |
+
SAVE_DIR="/fsx/sanchit"
|
23 |
+
|
24 |
+
GPUS_PER_NODE=8
|
25 |
+
NNODES=$SLURM_NNODES
|
26 |
+
|
27 |
+
# so processes know who to talk to
|
28 |
+
MASTER_ADDR=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1`
|
29 |
+
|
30 |
+
# From https://i.hsfzxjy.site/2021-03-10-obtain-a-random-unused-tcp-port-with-bash/
|
31 |
+
function unused_port() {
|
32 |
+
N=${1:-1}
|
33 |
+
comm -23 \
|
34 |
+
<(seq "1025" "65535" | sort) \
|
35 |
+
<(ss -Htan |
|
36 |
+
awk '{print $4}' |
|
37 |
+
cut -d':' -f2 |
|
38 |
+
sort -u) |
|
39 |
+
shuf |
|
40 |
+
head -n "$N"
|
41 |
+
}
|
42 |
+
MASTER_PORT=$(unused_port)
|
43 |
+
|
44 |
+
# export TORCH_CPP_LOG_LEVEL=INFO
|
45 |
+
# export TORCH_DISTRIBUTED_DEBUG=DETAIL
|
46 |
+
|
47 |
+
export LAUNCHER="python -u -m accelerate.commands.launch --config_file ./accelerate_config.yaml"
|
48 |
+
|
49 |
+
export PROGRAM="./run_distillation.py config_mistral.yaml"
|
50 |
+
export CMD="$LAUNCHER $PROGRAM"
|
51 |
+
echo $CMD
|
52 |
+
|
53 |
+
SRUN_ARGS=" \
|
54 |
+
--wait=60 \
|
55 |
+
--kill-on-bad-exit=1 \
|
56 |
+
"
|
57 |
+
|
58 |
+
# py-spy top -s -i -n -- $LAUNCHER --node_rank $SLURM_PROCID --role $SLURMD_NODENAME: $CMD
|
59 |
+
clear; srun $SRUN_ARGS --jobid $SLURM_JOB_ID bash -c "$CMD" 2>&1 | tee -a $SAVE_DIR/logs/main_log.txt
|
60 |
+
|
61 |
+
|
62 |
+
# srun error handling:
|
63 |
+
# --wait=60: wait 60 sec after the first task terminates before terminating all remaining tasks
|
64 |
+
# --kill-on-bad-exit=1: terminate a step if any task exits with a non-zero exit code
|
65 |
+
|
66 |
+
# SRUN_ARGS=" \
|
67 |
+
# --wait=60 \
|
68 |
+
# --kill-on-bad-exit=1 \
|
69 |
+
# "
|
70 |
+
#
|
71 |
+
# # py-spy top -s -i -n -- $LAUNCHER --node_rank $SLURM_PROCID --role $SLURMD_NODENAME: $CMD
|
72 |
+
# clear; srun $SRUN_ARGS --jobid $SLURM_JOBID bash -c "$CMD" 2>&1 | tee -a $SAVE_DIR/logs/main_log.txt
|
73 |
+
|
74 |
+
echo "END TIME: $(date)"
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [],
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": true,
|
35 |
+
"model_max_length": 1000000000000000019884624838656,
|
36 |
+
"pad_token": "</s>",
|
37 |
+
"sp_model_kwargs": {},
|
38 |
+
"spaces_between_special_tokens": false,
|
39 |
+
"tokenizer_class": "LlamaTokenizer",
|
40 |
+
"unk_token": "<unk>",
|
41 |
+
"use_default_system_prompt": false
|
42 |
+
}
|
wandb/debug-cli.sanchit.log
ADDED
File without changes
|
wandb/debug-internal.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9d5f155229d3837aab3fecb49a8e8b0dd1b1363e98b714e4bcb36ca9245b0e5
|
3 |
+
size 11245310
|
wandb/debug.log
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-04-16 20:53:09,244 INFO MainThread:965482 [wandb_setup.py:_flush():76] Current SDK version is 0.16.1
|
2 |
+
2024-04-16 20:53:09,245 INFO MainThread:965482 [wandb_setup.py:_flush():76] Configure stats pid to 965482
|
3 |
+
2024-04-16 20:53:09,245 INFO MainThread:965482 [wandb_setup.py:_flush():76] Loading settings from /admin/home/sanchit/.config/wandb/settings
|
4 |
+
2024-04-16 20:53:09,245 INFO MainThread:965482 [wandb_setup.py:_flush():76] Loading settings from /fsx/sanchit/mistral-debug-4bit/wandb/settings
|
5 |
+
2024-04-16 20:53:09,245 INFO MainThread:965482 [wandb_setup.py:_flush():76] Loading settings from environment variables: {}
|
6 |
+
2024-04-16 20:53:09,245 INFO MainThread:965482 [wandb_setup.py:_flush():76] Applying setup settings: {'_disable_service': False}
|
7 |
+
2024-04-16 20:53:09,245 INFO MainThread:965482 [wandb_setup.py:_flush():76] Inferring run settings from compute environment: {'program_relpath': 'run_distillation.py', 'program_abspath': '/fsx/sanchit/mistral-debug-4bit/run_distillation.py', 'program': '/fsx/sanchit/mistral-debug-4bit/run_distillation.py'}
|
8 |
+
2024-04-16 20:53:09,245 INFO MainThread:965482 [wandb_init.py:_log_setup():524] Logging user logs to /fsx/sanchit/mistral-debug-4bit/wandb/run-20240416_205309-xdytsc71/logs/debug.log
|
9 |
+
2024-04-16 20:53:09,245 INFO MainThread:965482 [wandb_init.py:_log_setup():525] Logging internal logs to /fsx/sanchit/mistral-debug-4bit/wandb/run-20240416_205309-xdytsc71/logs/debug-internal.log
|
10 |
+
2024-04-16 20:53:09,245 INFO MainThread:965482 [wandb_init.py:init():564] calling init triggers
|
11 |
+
2024-04-16 20:53:09,245 INFO MainThread:965482 [wandb_init.py:init():571] wandb.init called with sweep_config: {}
|
12 |
+
config: {}
|
13 |
+
2024-04-16 20:53:09,245 INFO MainThread:965482 [wandb_init.py:init():614] starting backend
|
14 |
+
2024-04-16 20:53:09,245 INFO MainThread:965482 [wandb_init.py:init():618] setting up manager
|
15 |
+
2024-04-16 20:53:09,248 INFO MainThread:965482 [backend.py:_multiprocessing_setup():105] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
|
16 |
+
2024-04-16 20:53:09,254 INFO MainThread:965482 [wandb_init.py:init():624] backend started and connected
|
17 |
+
2024-04-16 20:53:09,257 INFO MainThread:965482 [wandb_init.py:init():716] updated telemetry
|
18 |
+
2024-04-16 20:53:09,257 INFO MainThread:965482 [wandb_init.py:init():749] communicating run to backend with 90.0 second timeout
|
19 |
+
2024-04-16 20:53:09,461 INFO MainThread:965482 [wandb_run.py:_on_init():2254] communicating current version
|
20 |
+
2024-04-16 20:53:09,520 INFO MainThread:965482 [wandb_run.py:_on_init():2263] got version response upgrade_message: "wandb version 0.16.6 is available! To upgrade, please run:\n $ pip install wandb --upgrade"
|
21 |
+
|
22 |
+
2024-04-16 20:53:09,520 INFO MainThread:965482 [wandb_init.py:init():800] starting run threads in backend
|
23 |
+
2024-04-16 20:53:15,732 INFO MainThread:965482 [wandb_run.py:_console_start():2233] atexit reg
|
24 |
+
2024-04-16 20:53:15,732 INFO MainThread:965482 [wandb_run.py:_redirect():2088] redirect: wrap_raw
|
25 |
+
2024-04-16 20:53:15,732 INFO MainThread:965482 [wandb_run.py:_redirect():2153] Wrapping output streams.
|
26 |
+
2024-04-16 20:53:15,732 INFO MainThread:965482 [wandb_run.py:_redirect():2178] Redirects installed.
|
27 |
+
2024-04-16 20:53:15,733 INFO MainThread:965482 [wandb_init.py:init():841] run started, returning control to user process
|
28 |
+
2024-04-17 15:43:17,904 INFO MainThread:965482 [wandb_run.py:_finish():1962] finishing run sanchit-gandhi/distil-mixtral/xdytsc71
|
29 |
+
2024-04-17 15:43:17,906 INFO MainThread:965482 [wandb_run.py:_atexit_cleanup():2202] got exitcode: 0
|
30 |
+
2024-04-17 15:43:17,906 INFO MainThread:965482 [wandb_run.py:_restore():2185] restore
|
31 |
+
2024-04-17 15:43:17,907 INFO MainThread:965482 [wandb_run.py:_restore():2191] restore done
|
32 |
+
2024-04-17 15:43:24,105 INFO MainThread:965482 [wandb_run.py:_footer_history_summary_info():3837] rendering history
|
33 |
+
2024-04-17 15:43:24,106 INFO MainThread:965482 [wandb_run.py:_footer_history_summary_info():3869] rendering summary
|
34 |
+
2024-04-17 15:43:24,118 INFO MainThread:965482 [wandb_run.py:_footer_sync_info():3796] logging synced files
|
wandb/run-20240416_172306-uygw9yfk/files/conda-environment.yaml
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: venv
|
2 |
+
channels:
|
3 |
+
- pytorch
|
4 |
+
- nvidia
|
5 |
+
- defaults
|
6 |
+
dependencies:
|
7 |
+
- _libgcc_mutex=0.1=main
|
8 |
+
- _openmp_mutex=5.1=1_gnu
|
9 |
+
- blas=1.0=mkl
|
10 |
+
- brotli-python=1.0.9=py311h6a678d5_7
|
11 |
+
- bzip2=1.0.8=h7b6447c_0
|
12 |
+
- ca-certificates=2023.12.12=h06a4308_0
|
13 |
+
- certifi=2023.11.17=py311h06a4308_0
|
14 |
+
- cffi=1.16.0=py311h5eee18b_0
|
15 |
+
- cryptography=41.0.7=py311hdda0065_0
|
16 |
+
- cuda-cudart=12.1.105=0
|
17 |
+
- cuda-cupti=12.1.105=0
|
18 |
+
- cuda-libraries=12.1.0=0
|
19 |
+
- cuda-nvrtc=12.1.105=0
|
20 |
+
- cuda-nvtx=12.1.105=0
|
21 |
+
- cuda-opencl=12.3.101=0
|
22 |
+
- cuda-runtime=12.1.0=0
|
23 |
+
- ffmpeg=4.3=hf484d3e_0
|
24 |
+
- filelock=3.13.1=py311h06a4308_0
|
25 |
+
- freetype=2.12.1=h4a9f257_0
|
26 |
+
- giflib=5.2.1=h5eee18b_3
|
27 |
+
- gmp=6.2.1=h295c915_3
|
28 |
+
- gmpy2=2.1.2=py311hc9b5ff0_0
|
29 |
+
- gnutls=3.6.15=he1e5248_0
|
30 |
+
- intel-openmp=2023.1.0=hdb19cb5_46306
|
31 |
+
- jinja2=3.1.2=py311h06a4308_0
|
32 |
+
- jpeg=9e=h5eee18b_1
|
33 |
+
- lame=3.100=h7b6447c_0
|
34 |
+
- lcms2=2.12=h3be6417_0
|
35 |
+
- ld_impl_linux-64=2.38=h1181459_1
|
36 |
+
- lerc=3.0=h295c915_0
|
37 |
+
- libcublas=12.1.0.26=0
|
38 |
+
- libcufft=11.0.2.4=0
|
39 |
+
- libcufile=1.8.1.2=0
|
40 |
+
- libcurand=10.3.4.101=0
|
41 |
+
- libcusolver=11.4.4.55=0
|
42 |
+
- libcusparse=12.0.2.55=0
|
43 |
+
- libdeflate=1.17=h5eee18b_1
|
44 |
+
- libffi=3.4.4=h6a678d5_0
|
45 |
+
- libgcc-ng=11.2.0=h1234567_1
|
46 |
+
- libgomp=11.2.0=h1234567_1
|
47 |
+
- libiconv=1.16=h7f8727e_2
|
48 |
+
- libidn2=2.3.4=h5eee18b_0
|
49 |
+
- libjpeg-turbo=2.0.0=h9bf148f_0
|
50 |
+
- libnpp=12.0.2.50=0
|
51 |
+
- libnvjitlink=12.1.105=0
|
52 |
+
- libnvjpeg=12.1.1.14=0
|
53 |
+
- libpng=1.6.39=h5eee18b_0
|
54 |
+
- libstdcxx-ng=11.2.0=h1234567_1
|
55 |
+
- libtasn1=4.19.0=h5eee18b_0
|
56 |
+
- libtiff=4.5.1=h6a678d5_0
|
57 |
+
- libunistring=0.9.10=h27cfd23_0
|
58 |
+
- libuuid=1.41.5=h5eee18b_0
|
59 |
+
- libwebp=1.3.2=h11a3e52_0
|
60 |
+
- libwebp-base=1.3.2=h5eee18b_0
|
61 |
+
- llvm-openmp=14.0.6=h9e868ea_0
|
62 |
+
- lz4-c=1.9.4=h6a678d5_0
|
63 |
+
- markupsafe=2.1.1=py311h5eee18b_0
|
64 |
+
- mkl=2023.1.0=h213fc3f_46344
|
65 |
+
- mkl-service=2.4.0=py311h5eee18b_1
|
66 |
+
- mkl_fft=1.3.8=py311h5eee18b_0
|
67 |
+
- mkl_random=1.2.4=py311hdb19cb5_0
|
68 |
+
- mpc=1.1.0=h10f8cd9_1
|
69 |
+
- mpfr=4.0.2=hb69a4c5_1
|
70 |
+
- mpmath=1.3.0=py311h06a4308_0
|
71 |
+
- ncurses=6.4=h6a678d5_0
|
72 |
+
- nettle=3.7.3=hbbd107a_1
|
73 |
+
- networkx=3.1=py311h06a4308_0
|
74 |
+
- numpy=1.26.2=py311h08b1b3b_0
|
75 |
+
- numpy-base=1.26.2=py311hf175353_0
|
76 |
+
- openh264=2.1.1=h4ff587b_0
|
77 |
+
- openjpeg=2.4.0=h3ad879b_0
|
78 |
+
- openssl=3.0.12=h7f8727e_0
|
79 |
+
- pycparser=2.21=pyhd3eb1b0_0
|
80 |
+
- pyopenssl=23.2.0=py311h06a4308_0
|
81 |
+
- pysocks=1.7.1=py311h06a4308_0
|
82 |
+
- python=3.11.5=h955ad1f_0
|
83 |
+
- pytorch-cuda=12.1=ha16c6d3_5
|
84 |
+
- pytorch-mutex=1.0=cuda
|
85 |
+
- pyyaml=6.0.1=py311h5eee18b_0
|
86 |
+
- readline=8.2=h5eee18b_0
|
87 |
+
- requests=2.31.0=py311h06a4308_0
|
88 |
+
- setuptools=68.2.2=py311h06a4308_0
|
89 |
+
- sqlite=3.41.2=h5eee18b_0
|
90 |
+
- sympy=1.12=py311h06a4308_0
|
91 |
+
- tbb=2021.8.0=hdb19cb5_0
|
92 |
+
- tk=8.6.12=h1ccaba5_0
|
93 |
+
- wheel=0.41.2=py311h06a4308_0
|
94 |
+
- xz=5.4.5=h5eee18b_0
|
95 |
+
- yaml=0.2.5=h7b6447c_0
|
96 |
+
- zlib=1.2.13=h5eee18b_0
|
97 |
+
- zstd=1.5.5=hc292b87_0
|
98 |
+
- pip:
|
99 |
+
- absl-py==2.0.0
|
100 |
+
- accelerate==0.29.2
|
101 |
+
- aiohttp==3.9.1
|
102 |
+
- aiosignal==1.3.1
|
103 |
+
- annotated-types==0.6.0
|
104 |
+
- anyio==4.2.0
|
105 |
+
- appdirs==1.4.4
|
106 |
+
- argon2-cffi==23.1.0
|
107 |
+
- argon2-cffi-bindings==21.2.0
|
108 |
+
- arrow==1.3.0
|
109 |
+
- asttokens==2.4.1
|
110 |
+
- astunparse==1.6.3
|
111 |
+
- async-lru==2.0.4
|
112 |
+
- attrs==23.1.0
|
113 |
+
- audioread==3.0.1
|
114 |
+
- babel==2.14.0
|
115 |
+
- beautifulsoup4==4.12.3
|
116 |
+
- bitsandbytes==0.43.1
|
117 |
+
- bleach==6.1.0
|
118 |
+
- cachetools==5.3.2
|
119 |
+
- chardet==5.2.0
|
120 |
+
- charset-normalizer==3.3.2
|
121 |
+
- click==8.1.7
|
122 |
+
- comm==0.2.1
|
123 |
+
- datasets==2.18.1.dev0
|
124 |
+
- debugpy==1.8.1
|
125 |
+
- decorator==5.1.1
|
126 |
+
- deepspeed==0.12.2
|
127 |
+
- defusedxml==0.7.1
|
128 |
+
- dill==0.3.7
|
129 |
+
- docker-pycreds==0.4.0
|
130 |
+
- docstring-parser==0.15
|
131 |
+
- einops==0.7.0
|
132 |
+
- evaluate==0.4.0
|
133 |
+
- executing==2.0.1
|
134 |
+
- fastjsonschema==2.19.1
|
135 |
+
- flatbuffers==23.5.26
|
136 |
+
- fqdn==1.5.1
|
137 |
+
- frozenlist==1.4.1
|
138 |
+
- fsspec==2023.10.0
|
139 |
+
- gast==0.5.4
|
140 |
+
- gitdb==4.0.11
|
141 |
+
- gitpython==3.1.40
|
142 |
+
- google-auth==2.26.1
|
143 |
+
- google-auth-oauthlib==1.2.0
|
144 |
+
- google-pasta==0.2.0
|
145 |
+
- grpcio==1.60.0
|
146 |
+
- h11==0.14.0
|
147 |
+
- h5py==3.10.0
|
148 |
+
- hf-transfer==0.1.5
|
149 |
+
- hjson==3.1.0
|
150 |
+
- httpcore==1.0.2
|
151 |
+
- httpx==0.26.0
|
152 |
+
- huggingface-hub==0.22.2
|
153 |
+
- idna==3.6
|
154 |
+
- ipdb==0.13.13
|
155 |
+
- ipykernel==6.29.2
|
156 |
+
- ipython==8.21.0
|
157 |
+
- isoduration==20.11.0
|
158 |
+
- jedi==0.19.1
|
159 |
+
- jiwer==3.0.3
|
160 |
+
- joblib==1.3.2
|
161 |
+
- json5==0.9.14
|
162 |
+
- jsonpointer==2.4
|
163 |
+
- jsonschema==4.21.1
|
164 |
+
- jsonschema-specifications==2023.12.1
|
165 |
+
- jupyter-client==8.6.0
|
166 |
+
- jupyter-core==5.7.1
|
167 |
+
- jupyter-events==0.9.0
|
168 |
+
- jupyter-lsp==2.2.2
|
169 |
+
- jupyter-server==2.12.5
|
170 |
+
- jupyter-server-terminals==0.5.2
|
171 |
+
- jupyterlab==4.1.1
|
172 |
+
- jupyterlab-pygments==0.3.0
|
173 |
+
- jupyterlab-server==2.25.2
|
174 |
+
- keras==2.15.0
|
175 |
+
- lazy-loader==0.3
|
176 |
+
- libclang==16.0.6
|
177 |
+
- librosa==0.10.1
|
178 |
+
- llvmlite==0.41.1
|
179 |
+
- markdown==3.5.1
|
180 |
+
- markdown-it-py==3.0.0
|
181 |
+
- matplotlib-inline==0.1.6
|
182 |
+
- mdurl==0.1.2
|
183 |
+
- mistune==3.0.2
|
184 |
+
- ml-dtypes==0.2.0
|
185 |
+
- msgpack==1.0.7
|
186 |
+
- multidict==6.0.4
|
187 |
+
- multiprocess==0.70.15
|
188 |
+
- nbclient==0.9.0
|
189 |
+
- nbconvert==7.16.0
|
190 |
+
- nbformat==5.9.2
|
191 |
+
- nest-asyncio==1.6.0
|
192 |
+
- ninja==1.11.1.1
|
193 |
+
- nltk==3.8.1
|
194 |
+
- notebook-shim==0.2.3
|
195 |
+
- numba==0.58.1
|
196 |
+
- nvidia-cublas-cu12==12.1.3.1
|
197 |
+
- nvidia-cuda-cupti-cu12==12.1.105
|
198 |
+
- nvidia-cuda-nvrtc-cu12==12.1.105
|
199 |
+
- nvidia-cuda-runtime-cu12==12.1.105
|
200 |
+
- nvidia-cudnn-cu12==8.9.2.26
|
201 |
+
- nvidia-cufft-cu12==11.0.2.54
|
202 |
+
- nvidia-curand-cu12==10.3.2.106
|
203 |
+
- nvidia-cusolver-cu12==11.4.5.107
|
204 |
+
- nvidia-cusparse-cu12==12.1.0.106
|
205 |
+
- nvidia-nccl-cu12==2.20.5
|
206 |
+
- nvidia-nvjitlink-cu12==12.3.101
|
207 |
+
- nvidia-nvtx-cu12==12.1.105
|
208 |
+
- oauthlib==3.2.2
|
209 |
+
- opt-einsum==3.3.0
|
210 |
+
- overrides==7.7.0
|
211 |
+
- packaging==23.2
|
212 |
+
- pandas==2.1.4
|
213 |
+
- pandocfilters==1.5.1
|
214 |
+
- parso==0.8.3
|
215 |
+
- peft==0.7.1
|
216 |
+
- pexpect==4.9.0
|
217 |
+
- pillow==10.2.0
|
218 |
+
- pip==24.0
|
219 |
+
- platformdirs==4.1.0
|
220 |
+
- pooch==1.8.0
|
221 |
+
- prometheus-client==0.19.0
|
222 |
+
- prompt-toolkit==3.0.43
|
223 |
+
- protobuf==3.20.2
|
224 |
+
- psutil==5.9.7
|
225 |
+
- ptyprocess==0.7.0
|
226 |
+
- pure-eval==0.2.2
|
227 |
+
- py-cpuinfo==9.0.0
|
228 |
+
- pyarrow==14.0.2
|
229 |
+
- pyarrow-hotfix==0.6
|
230 |
+
- pyasn1==0.5.1
|
231 |
+
- pyasn1-modules==0.3.0
|
232 |
+
- pydantic==2.6.0
|
233 |
+
- pydantic-core==2.16.1
|
234 |
+
- pygments==2.17.2
|
235 |
+
- pynvml==11.5.0
|
236 |
+
- python-dateutil==2.8.2
|
237 |
+
- python-json-logger==2.0.7
|
238 |
+
- pytorch-triton==3.0.0+989adb9a29
|
239 |
+
- pytz==2023.3.post1
|
240 |
+
- pyzmq==25.1.2
|
241 |
+
- rapidfuzz==3.6.1
|
242 |
+
- referencing==0.33.0
|
243 |
+
- regex==2023.12.25
|
244 |
+
- requests-oauthlib==1.3.1
|
245 |
+
- responses==0.18.0
|
246 |
+
- rfc3339-validator==0.1.4
|
247 |
+
- rfc3986-validator==0.1.1
|
248 |
+
- rich==13.7.0
|
249 |
+
- rpds-py==0.17.1
|
250 |
+
- rsa==4.9
|
251 |
+
- safetensors==0.4.1
|
252 |
+
- scikit-learn==1.3.2
|
253 |
+
- scipy==1.11.4
|
254 |
+
- send2trash==1.8.2
|
255 |
+
- sentencepiece==0.1.99
|
256 |
+
- sentry-sdk==1.39.1
|
257 |
+
- setproctitle==1.3.3
|
258 |
+
- shtab==1.6.5
|
259 |
+
- six==1.16.0
|
260 |
+
- smmap==5.0.1
|
261 |
+
- sniffio==1.3.0
|
262 |
+
- soundfile==0.12.1
|
263 |
+
- soupsieve==2.5
|
264 |
+
- soxr==0.3.7
|
265 |
+
- stack-data==0.6.3
|
266 |
+
- tensorboard==2.15.1
|
267 |
+
- tensorboard-data-server==0.7.2
|
268 |
+
- tensorflow-cpu==2.15.0.post1
|
269 |
+
- tensorflow-estimator==2.15.0
|
270 |
+
- tensorflow-io-gcs-filesystem==0.35.0
|
271 |
+
- termcolor==2.4.0
|
272 |
+
- terminado==0.18.0
|
273 |
+
- threadpoolctl==3.2.0
|
274 |
+
- tinycss2==1.2.1
|
275 |
+
- tokenizers==0.15.0
|
276 |
+
- torch==2.4.0.dev20240323+cu121
|
277 |
+
- torchaudio==2.2.0.dev20240323+cu121
|
278 |
+
- torchvision==0.19.0.dev20240323+cu121
|
279 |
+
- tornado==6.4
|
280 |
+
- tqdm==4.66.1
|
281 |
+
- traitlets==5.14.1
|
282 |
+
- transformers==4.39.0.dev0
|
283 |
+
- triton==2.2.0
|
284 |
+
- trl==0.7.7
|
285 |
+
- types-python-dateutil==2.8.19.20240106
|
286 |
+
- typing-extensions==4.9.0
|
287 |
+
- tyro==0.7.0
|
288 |
+
- tzdata==2023.3
|
289 |
+
- uri-template==1.3.0
|
290 |
+
- urllib3==2.1.0
|
291 |
+
- wandb==0.16.1
|
292 |
+
- wcwidth==0.2.13
|
293 |
+
- webcolors==1.13
|
294 |
+
- webencodings==0.5.1
|
295 |
+
- websocket-client==1.7.0
|
296 |
+
- werkzeug==3.0.1
|
297 |
+
- wrapt==1.14.1
|
298 |
+
- xxhash==3.4.1
|
299 |
+
- yarl==1.9.4
|
300 |
+
prefix: /fsx/sanchit/miniconda3/envs/venv
|
wandb/run-20240416_172306-uygw9yfk/files/config.yaml
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wandb_version: 1
|
2 |
+
|
3 |
+
_wandb:
|
4 |
+
desc: null
|
5 |
+
value:
|
6 |
+
python_version: 3.11.5
|
7 |
+
cli_version: 0.16.1
|
8 |
+
framework: huggingface
|
9 |
+
huggingface_version: 4.40.0.dev0
|
10 |
+
is_jupyter_run: false
|
11 |
+
is_kaggle_kernel: false
|
12 |
+
start_time: 1713288186.348831
|
13 |
+
t:
|
14 |
+
1:
|
15 |
+
- 1
|
16 |
+
- 11
|
17 |
+
- 49
|
18 |
+
- 51
|
19 |
+
- 55
|
20 |
+
- 71
|
21 |
+
- 98
|
22 |
+
2:
|
23 |
+
- 1
|
24 |
+
- 2
|
25 |
+
- 3
|
26 |
+
- 11
|
27 |
+
- 49
|
28 |
+
- 51
|
29 |
+
- 55
|
30 |
+
- 71
|
31 |
+
- 98
|
32 |
+
3:
|
33 |
+
- 23
|
34 |
+
4: 3.11.5
|
35 |
+
5: 0.16.1
|
36 |
+
6: 4.40.0.dev0
|
37 |
+
8:
|
38 |
+
- 5
|
39 |
+
13: linux-x86_64
|
wandb/run-20240416_172306-uygw9yfk/files/output.log
ADDED
@@ -0,0 +1,2124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
04/16/2024 17:23:10 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: True, 16-bits training: False
|
2 |
+
04/16/2024 17:23:10 - INFO - __main__ - Training/evaluation parameters DistillationTrainingArguments(
|
3 |
+
_n_gpu=1,
|
4 |
+
accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None},
|
5 |
+
adafactor=False,
|
6 |
+
adam_beta1=0.9,
|
7 |
+
adam_beta2=0.999,
|
8 |
+
adam_epsilon=1e-08,
|
9 |
+
auto_find_batch_size=False,
|
10 |
+
bf16=False,
|
11 |
+
bf16_full_eval=False,
|
12 |
+
data_seed=None,
|
13 |
+
dataloader_drop_last=False,
|
14 |
+
dataloader_num_workers=4,
|
15 |
+
dataloader_persistent_workers=False,
|
16 |
+
dataloader_pin_memory=True,
|
17 |
+
dataloader_prefetch_factor=None,
|
18 |
+
ddp_backend=None,
|
19 |
+
ddp_broadcast_buffers=None,
|
20 |
+
ddp_bucket_cap_mb=None,
|
21 |
+
ddp_find_unused_parameters=None,
|
22 |
+
ddp_timeout=7200,
|
23 |
+
debug=[],
|
24 |
+
deepspeed=None,
|
25 |
+
disable_tqdm=False,
|
26 |
+
dispatch_batches=None,
|
27 |
+
do_eval=True,
|
28 |
+
do_predict=False,
|
29 |
+
do_train=True,
|
30 |
+
dtype=bfloat16,
|
31 |
+
eval_accumulation_steps=None,
|
32 |
+
eval_delay=0,
|
33 |
+
eval_steps=None,
|
34 |
+
evaluation_strategy=IntervalStrategy.EPOCH,
|
35 |
+
fp16=False,
|
36 |
+
fp16_backend=auto,
|
37 |
+
fp16_full_eval=False,
|
38 |
+
fp16_opt_level=O1,
|
39 |
+
freeze_lm_head=False,
|
40 |
+
fsdp=[],
|
41 |
+
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
|
42 |
+
fsdp_min_num_params=0,
|
43 |
+
fsdp_transformer_layer_cls_to_wrap=None,
|
44 |
+
full_determinism=False,
|
45 |
+
generation_config=None,
|
46 |
+
generation_max_length=None,
|
47 |
+
generation_num_beams=None,
|
48 |
+
gradient_accumulation_steps=1,
|
49 |
+
gradient_checkpointing=False,
|
50 |
+
gradient_checkpointing_kwargs=None,
|
51 |
+
greater_is_better=None,
|
52 |
+
group_by_length=False,
|
53 |
+
half_precision_backend=auto,
|
54 |
+
hub_always_push=False,
|
55 |
+
hub_model_id=None,
|
56 |
+
hub_private_repo=False,
|
57 |
+
hub_strategy=HubStrategy.EVERY_SAVE,
|
58 |
+
hub_token=<HUB_TOKEN>,
|
59 |
+
ignore_data_skip=False,
|
60 |
+
include_inputs_for_metrics=False,
|
61 |
+
include_num_input_tokens_seen=False,
|
62 |
+
include_tokens_per_second=False,
|
63 |
+
jit_mode_eval=False,
|
64 |
+
kl_weight=1.0,
|
65 |
+
label_names=None,
|
66 |
+
label_smoothing_factor=0.0,
|
67 |
+
learning_rate=0.0003,
|
68 |
+
length_column_name=length,
|
69 |
+
load_best_model_at_end=False,
|
70 |
+
local_rank=0,
|
71 |
+
log_level=passive,
|
72 |
+
log_level_replica=warning,
|
73 |
+
log_on_each_node=True,
|
74 |
+
logging_dir=./runs/Apr16_17-23-01_ip-26-0-164-187,
|
75 |
+
logging_first_step=False,
|
76 |
+
logging_nan_inf_filter=True,
|
77 |
+
logging_steps=25,
|
78 |
+
logging_strategy=IntervalStrategy.STEPS,
|
79 |
+
lr_scheduler_kwargs={},
|
80 |
+
lr_scheduler_type=SchedulerType.LINEAR,
|
81 |
+
max_grad_norm=1.0,
|
82 |
+
max_steps=50000,
|
83 |
+
metric_for_best_model=None,
|
84 |
+
mp_parameters=,
|
85 |
+
neftune_noise_alpha=None,
|
86 |
+
no_cuda=False,
|
87 |
+
num_train_epochs=3.0,
|
88 |
+
optim=OptimizerNames.ADAMW_TORCH,
|
89 |
+
optim_args=None,
|
90 |
+
optim_target_modules=None,
|
91 |
+
output_dir=./,
|
92 |
+
output_router_logits=True,
|
93 |
+
overwrite_output_dir=True,
|
94 |
+
past_index=-1,
|
95 |
+
per_device_eval_batch_size=8,
|
96 |
+
per_device_train_batch_size=8,
|
97 |
+
predict_with_generate=False,
|
98 |
+
prediction_loss_only=False,
|
99 |
+
push_to_hub=False,
|
100 |
+
push_to_hub_model_id=None,
|
101 |
+
push_to_hub_organization=None,
|
102 |
+
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
|
103 |
+
ray_scope=last,
|
104 |
+
remove_unused_columns=True,
|
105 |
+
report_to=['wandb'],
|
106 |
+
resume_from_checkpoint=None,
|
107 |
+
run_name=./,
|
108 |
+
save_on_each_node=False,
|
109 |
+
save_only_model=False,
|
110 |
+
save_safetensors=True,
|
111 |
+
save_steps=500,
|
112 |
+
save_strategy=IntervalStrategy.EPOCH,
|
113 |
+
save_total_limit=1,
|
114 |
+
seed=42,
|
115 |
+
skip_memory_metrics=True,
|
116 |
+
sortish_sampler=False,
|
117 |
+
split_batches=None,
|
118 |
+
temperature=2.0,
|
119 |
+
tf32=None,
|
120 |
+
torch_compile=False,
|
121 |
+
torch_compile_backend=None,
|
122 |
+
torch_compile_mode=None,
|
123 |
+
torchdynamo=None,
|
124 |
+
tpu_metrics_debug=False,
|
125 |
+
tpu_num_cores=None,
|
126 |
+
use_cpu=False,
|
127 |
+
use_ipex=False,
|
128 |
+
use_legacy_prediction_loop=False,
|
129 |
+
use_mps_device=False,
|
130 |
+
warmup_ratio=0.0,
|
131 |
+
warmup_steps=500,
|
132 |
+
weight_decay=0.0,
|
133 |
+
)
|
134 |
+
Combining datasets...: 0%| | 0/8 [00:00<?, ?it/s]
|
135 |
+
Resolving data files: 100%|█████████████████████████████████████████████████████████| 18/18 [00:00<00:00, 101885.93it/s]
|
136 |
+
Loading dataset shards: 100%|█████████████████████████████████████████████████████████| 18/18 [00:00<00:00, 2253.19it/s]
|
137 |
+
Resolving data files: 100%|██████████████████████████████████████████████████████████| 18/18 [00:00<00:00, 94019.27it/s]
|
138 |
+
|
139 |
+
Resolving data files: 100%|████████████████████████████████████████████████████████████| 18/18 [00:00<00:00, 138.64it/s]
|
140 |
+
Resolving data files: 100%|██████████████████████████████████████████████████████████| 18/18 [00:00<00:00, 97668.14it/s]
|
141 |
+
Resolving data files: 100%|████████████████████████████████████���█████████████████████| 18/18 [00:00<00:00, 96175.12it/s]
|
142 |
+
Resolving data files: 100%|████████████████████████████████████████████████████████████| 43/43 [00:00<00:00, 414.13it/s]
|
143 |
+
Loading dataset shards: 100%|█████████████████████████████████████████████████████████| 43/43 [00:00<00:00, 2036.64it/s]
|
144 |
+
Resolving data files: 100%|████████████████████████████████████████████████████████████| 18/18 [00:00<00:00, 152.49it/s]
|
145 |
+
Resolving data files: 100%|███████████████████████████████████████████████████████| 139/139 [00:00<00:00, 322460.32it/s]
|
146 |
+
Loading dataset shards: 100%|███████████████████████████████████████████████████████| 138/138 [00:00<00:00, 2441.33it/s]
|
147 |
+
Resolving data files: 100%|████████████████████████████████████████████████████████████| 18/18 [00:00<00:00, 158.30it/s]
|
148 |
+
Resolving data files: 89%|█████████████████████████████████████████████████████▎ | 16/18 [00:00<00:00, 141.58it/s]
|
149 |
+
Loading dataset shards: 100%|███████████████████████████████████████████████████████| 117/117 [00:00<00:00, 2419.04it/s]
|
150 |
+
Combining datasets...: 88%|██████████████████████████████████████████████████████▎ | 7/8 [00:24<00:03, 3.60s/it]
|
151 |
+
|
152 |
+
Combining datasets...: 100%|██████████████████████████████████████████████████████████████| 8/8 [00:30<00:00, 3.82s/it]
|
153 |
+
Resolving data files: 100%|█████████████████████████████████████████████████████████| 18/18 [00:00<00:00, 104134.44it/s]
|
154 |
+
Resolving data files: 100%|██████████████████████████████████████████████████████████| 18/18 [00:00<00:00, 98176.17it/s]
|
155 |
+
Resolving data files: 100%|██████████████████████████████████████████████████████████| 18/18 [00:00<00:00, 93553.25it/s]
|
156 |
+
Resolving data files: 100%|██████████████████████████████████████████████████████████| 18/18 [00:00<00:00, 90851.35it/s]
|
157 |
+
Resolving data files: 100%|██████████████████████████████████████████████████████████| 18/18 [00:00<00:00, 98560.67it/s]
|
158 |
+
Resolving data files: 100%|██████████████████████████████████████████████████████████| 18/18 [00:00<00:00, 99996.65it/s]
|
159 |
+
Resolving data files: 100%|█████████████████████████████████████████████████████████| 43/43 [00:00<00:00, 183287.67it/s]
|
160 |
+
Resolving data files: 100%|██████████████████████████████████████████████████████████| 18/18 [00:00<00:00, 95325.09it/s]
|
161 |
+
Resolving data files: 100%|███████████████████████████████████████████████████████| 139/139 [00:00<00:00, 366902.62it/s]
|
162 |
+
Resolving data files: 100%|█████████████████████████████████████████████████████████| 18/18 [00:00<00:00, 103705.32it/s]
|
163 |
+
Resolving data files: 100%|███████████████████████████████████████████████████████| 118/118 [00:00<00:00, 308174.27it/s]
|
164 |
+
Resolving data files: 100%|███████��██████████████████████████████████████████████████| 18/18 [00:00<00:00, 85211.59it/s]
|
165 |
+
loading configuration file config.json from cache at /fsx/sanchit/cache/models--sanchit-gandhi--Mistral-7B-v0.1-6-layer/snapshots/d4e2300e8038196385e9106614a4d7b6c5b70211/config.json
|
166 |
+
Model config MistralConfig {
|
167 |
+
"_name_or_path": "sanchit-gandhi/Mistral-7B-v0.1-6-layer",
|
168 |
+
"architectures": [
|
169 |
+
"MistralForCausalLM"
|
170 |
+
],
|
171 |
+
"attention_dropout": 0.0,
|
172 |
+
"bos_token_id": 1,
|
173 |
+
"eos_token_id": 2,
|
174 |
+
"hidden_act": "silu",
|
175 |
+
"hidden_size": 4096,
|
176 |
+
"initializer_range": 0.02,
|
177 |
+
"intermediate_size": 14336,
|
178 |
+
"max_position_embeddings": 32768,
|
179 |
+
"model_type": "mistral",
|
180 |
+
"num_attention_heads": 32,
|
181 |
+
"num_hidden_layers": 6,
|
182 |
+
"num_key_value_heads": 8,
|
183 |
+
"rms_norm_eps": 1e-05,
|
184 |
+
"rope_theta": 10000.0,
|
185 |
+
"sliding_window": 4096,
|
186 |
+
"tie_word_embeddings": false,
|
187 |
+
"torch_dtype": "float32",
|
188 |
+
"transformers_version": "4.40.0.dev0",
|
189 |
+
"use_cache": true,
|
190 |
+
"vocab_size": 32000
|
191 |
+
}
|
192 |
+
loading file tokenizer.model from cache at /fsx/sanchit/cache/models--sanchit-gandhi--Mistral-7B-v0.1-6-layer/snapshots/d4e2300e8038196385e9106614a4d7b6c5b70211/tokenizer.model
|
193 |
+
loading file tokenizer.json from cache at /fsx/sanchit/cache/models--sanchit-gandhi--Mistral-7B-v0.1-6-layer/snapshots/d4e2300e8038196385e9106614a4d7b6c5b70211/tokenizer.json
|
194 |
+
loading file added_tokens.json from cache at None
|
195 |
+
loading file special_tokens_map.json from cache at /fsx/sanchit/cache/models--sanchit-gandhi--Mistral-7B-v0.1-6-layer/snapshots/d4e2300e8038196385e9106614a4d7b6c5b70211/special_tokens_map.json
|
196 |
+
loading file tokenizer_config.json from cache at /fsx/sanchit/cache/models--sanchit-gandhi--Mistral-7B-v0.1-6-layer/snapshots/d4e2300e8038196385e9106614a4d7b6c5b70211/tokenizer_config.json
|
197 |
+
loading configuration file config.json from cache at /fsx/sanchit/cache/models--mistralai--Mistral-7B-v0.1/snapshots/26bca36bde8333b5d7f72e9ed20ccda6a618af24/config.json
|
198 |
+
Model config MistralConfig {
|
199 |
+
"_name_or_path": "mistralai/Mistral-7B-v0.1",
|
200 |
+
"architectures": [
|
201 |
+
"MistralForCausalLM"
|
202 |
+
],
|
203 |
+
"attention_dropout": 0.0,
|
204 |
+
"bos_token_id": 1,
|
205 |
+
"eos_token_id": 2,
|
206 |
+
"hidden_act": "silu",
|
207 |
+
"hidden_size": 4096,
|
208 |
+
"initializer_range": 0.02,
|
209 |
+
"intermediate_size": 14336,
|
210 |
+
"max_position_embeddings": 32768,
|
211 |
+
"model_type": "mistral",
|
212 |
+
"num_attention_heads": 32,
|
213 |
+
"num_hidden_layers": 32,
|
214 |
+
"num_key_value_heads": 8,
|
215 |
+
"rms_norm_eps": 1e-05,
|
216 |
+
"rope_theta": 10000.0,
|
217 |
+
"sliding_window": 4096,
|
218 |
+
"tie_word_embeddings": false,
|
219 |
+
"torch_dtype": "bfloat16",
|
220 |
+
"transformers_version": "4.40.0.dev0",
|
221 |
+
"use_cache": true,
|
222 |
+
"vocab_size": 32000
|
223 |
+
}
|
224 |
+
The device_map was not initialized. Setting device_map to {'':torch.cuda.current_device()}. If you want to use the model for inference, please set device_map ='auto'
|
225 |
+
loading weights file model.safetensors from cache at /fsx/sanchit/cache/models--mistralai--Mistral-7B-v0.1/snapshots/26bca36bde8333b5d7f72e9ed20ccda6a618af24/model.safetensors.index.json
|
226 |
+
Downloading shards: 100%|███████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 1479.73it/s]
|
227 |
+
Instantiating MistralForCausalLM model under default dtype torch.bfloat16.
|
228 |
+
Generate config GenerationConfig {
|
229 |
+
"bos_token_id": 1,
|
230 |
+
"eos_token_id": 2
|
231 |
+
}
|
232 |
+
|
233 |
+
Loading checkpoint shards: 100%|██████████████████████████████████████████████████████████| 2/2 [00:05<00:00, 2.99s/it]
|
234 |
+
All model checkpoint weights were used when initializing MistralForCausalLM.
|
235 |
+
All the weights of MistralForCausalLM were initialized from the model checkpoint at mistralai/Mistral-7B-v0.1.
|
236 |
+
If your task is similar to the task the model of the checkpoint was trained on, you can already use MistralForCausalLM for predictions without further training.
|
237 |
+
loading configuration file generation_config.json from cache at /fsx/sanchit/cache/models--mistralai--Mistral-7B-v0.1/snapshots/26bca36bde8333b5d7f72e9ed20ccda6a618af24/generation_config.json
|
238 |
+
Generate config GenerationConfig {
|
239 |
+
"bos_token_id": 1,
|
240 |
+
"eos_token_id": 2
|
241 |
+
}
|
242 |
+
loading weights file model.safetensors from cache at /fsx/sanchit/cache/models--sanchit-gandhi--Mistral-7B-v0.1-6-layer/snapshots/d4e2300e8038196385e9106614a4d7b6c5b70211/model.safetensors.index.json
|
243 |
+
Downloading shards: 100%|███████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 1308.47it/s]
|
244 |
+
Generate config GenerationConfig {
|
245 |
+
"bos_token_id": 1,
|
246 |
+
"eos_token_id": 2
|
247 |
+
}
|
248 |
+
Loading checkpoint shards: 100%|██████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 4.66it/s]
|
249 |
+
All model checkpoint weights were used when initializing MistralForCausalLM.
|
250 |
+
All the weights of MistralForCausalLM were initialized from the model checkpoint at sanchit-gandhi/Mistral-7B-v0.1-6-layer.
|
251 |
+
If your task is similar to the task the model of the checkpoint was trained on, you can already use MistralForCausalLM for predictions without further training.
|
252 |
+
loading configuration file generation_config.json from cache at /fsx/sanchit/cache/models--sanchit-gandhi--Mistral-7B-v0.1-6-layer/snapshots/d4e2300e8038196385e9106614a4d7b6c5b70211/generation_config.json
|
253 |
+
Generate config GenerationConfig {
|
254 |
+
"bos_token_id": 1,
|
255 |
+
"eos_token_id": 2
|
256 |
+
}
|
257 |
+
tokenizer config file saved in ./tokenizer_config.json
|
258 |
+
Special tokens file saved in ./special_tokens_map.json
|
259 |
+
Configuration saved in ./config.json
|
260 |
+
Configuration saved in ./generation_config.json
|
261 |
+
|
262 |
+
|
263 |
+
|
264 |
+
|
265 |
+
|
266 |
+
|
267 |
+
|
268 |
+
|
269 |
+
|
270 |
+
|
271 |
+
|
272 |
+
|
273 |
+
|
274 |
+
|
275 |
+
|
276 |
+
|
277 |
+
|
278 |
+
|
279 |
+
|
280 |
+
|
281 |
+
|
282 |
+
|
283 |
+
|
284 |
+
|
285 |
+
|
286 |
+
|
287 |
+
|
288 |
+
|
289 |
+
|
290 |
+
|
291 |
+
|
292 |
+
|
293 |
+
|
294 |
+
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
|
299 |
+
|
300 |
+
|
301 |
+
|
302 |
+
|
303 |
+
|
304 |
+
|
305 |
+
|
306 |
+
|
307 |
+
|
308 |
+
|
309 |
+
|
310 |
+
|
311 |
+
|
312 |
+
|
313 |
+
|
314 |
+
|
315 |
+
|
316 |
+
|
317 |
+
|
318 |
+
|
319 |
+
|
320 |
+
|
321 |
+
|
322 |
+
|
323 |
+
|
324 |
+
|
325 |
+
|
326 |
+
|
327 |
+
|
328 |
+
|
329 |
+
|
330 |
+
|
331 |
+
|
332 |
+
|
333 |
+
|
334 |
+
|
335 |
+
|
336 |
+
|
337 |
+
|
338 |
+
|
339 |
+
|
340 |
+
|
341 |
+
|
342 |
+
|
343 |
+
|
344 |
+
|
345 |
+
|
346 |
+
|
347 |
+
|
348 |
+
|
349 |
+
|
350 |
+
|
351 |
+
|
352 |
+
|
353 |
+
|
354 |
+
|
355 |
+
|
356 |
+
|
357 |
+
|
358 |
+
|
359 |
+
|
360 |
+
|
361 |
+
|
362 |
+
|
363 |
+
|
364 |
+
|
365 |
+
|
366 |
+
|
367 |
+
|
368 |
+
|
369 |
+
|
370 |
+
|
371 |
+
|
372 |
+
|
373 |
+
|
374 |
+
|
375 |
+
|
376 |
+
|
377 |
+
|
378 |
+
|
379 |
+
|
380 |
+
|
381 |
+
|
382 |
+
|
383 |
+
|
384 |
+
|
385 |
+
|
386 |
+
|
387 |
+
|
388 |
+
|
389 |
+
|
390 |
+
|
391 |
+
|
392 |
+
|
393 |
+
|
394 |
+
|
395 |
+
|
396 |
+
|
397 |
+
|
398 |
+
|
399 |
+
|
400 |
+
|
401 |
+
|
402 |
+
|
403 |
+
|
404 |
+
|
405 |
+
|
406 |
+
|
407 |
+
|
408 |
+
|
409 |
+
|
410 |
+
|
411 |
+
|
412 |
+
|
413 |
+
|
414 |
+
|
415 |
+
|
416 |
+
|
417 |
+
|
418 |
+
|
419 |
+
|
420 |
+
|
421 |
+
|
422 |
+
|
423 |
+
|
424 |
+
|
425 |
+
|
426 |
+
|
427 |
+
|
428 |
+
|
429 |
+
|
430 |
+
|
431 |
+
|
432 |
+
|
433 |
+
|
434 |
+
|
435 |
+
|
436 |
+
|
437 |
+
|
438 |
+
|
439 |
+
|
440 |
+
|
441 |
+
|
442 |
+
|
443 |
+
|
444 |
+
|
445 |
+
|
446 |
+
|
447 |
+
|
448 |
+
|
449 |
+
|
450 |
+
|
451 |
+
|
452 |
+
|
453 |
+
|
454 |
+
|
455 |
+
|
456 |
+
|
457 |
+
|
458 |
+
|
459 |
+
|
460 |
+
|
461 |
+
|
462 |
+
|
463 |
+
|
464 |
+
|
465 |
+
|
466 |
+
|
467 |
+
|
468 |
+
|
469 |
+
|
470 |
+
|
471 |
+
|
472 |
+
|
473 |
+
|
474 |
+
|
475 |
+
|
476 |
+
|
477 |
+
|
478 |
+
|
479 |
+
|
480 |
+
|
481 |
+
|
482 |
+
|
483 |
+
|
484 |
+
|
485 |
+
|
486 |
+
|
487 |
+
|
488 |
+
|
489 |
+
|
490 |
+
|
491 |
+
|
492 |
+
|
493 |
+
|
494 |
+
|
495 |
+
|
496 |
+
|
497 |
+
|
498 |
+
|
499 |
+
|
500 |
+
|
501 |
+
|
502 |
+
|
503 |
+
|
504 |
+
|
505 |
+
|
506 |
+
|
507 |
+
|
508 |
+
|
509 |
+
|
510 |
+
|
511 |
+
|
512 |
+
|
513 |
+
|
514 |
+
|
515 |
+
|
516 |
+
|
517 |
+
|
518 |
+
|
519 |
+
|
520 |
+
|
521 |
+
|
522 |
+
|
523 |
+
|
524 |
+
|
525 |
+
|
526 |
+
|
527 |
+
|
528 |
+
|
529 |
+
|
530 |
+
|
531 |
+
|
532 |
+
|
533 |
+
|
534 |
+
|
535 |
+
|
536 |
+
|
537 |
+
|
538 |
+
|
539 |
+
|
540 |
+
|
541 |
+
|
542 |
+
|
543 |
+
|
544 |
+
|
545 |
+
|
546 |
+
|
547 |
+
|
548 |
+
|
549 |
+
|
550 |
+
|
551 |
+
|
552 |
+
|
553 |
+
|
554 |
+
|
555 |
+
|
556 |
+
|
557 |
+
|
558 |
+
|
559 |
+
|
560 |
+
|
561 |
+
|
562 |
+
|
563 |
+
|
564 |
+
|
565 |
+
|
566 |
+
|
567 |
+
|
568 |
+
|
569 |
+
|
570 |
+
|
571 |
+
|
572 |
+
|
573 |
+
|
574 |
+
|
575 |
+
|
576 |
+
|
577 |
+
|
578 |
+
|
579 |
+
|
580 |
+
|
581 |
+
|
582 |
+
|
583 |
+
|
584 |
+
|
585 |
+
|
586 |
+
|
587 |
+
|
588 |
+
|
589 |
+
|
590 |
+
|
591 |
+
|
592 |
+
|
593 |
+
|
594 |
+
|
595 |
+
|
596 |
+
|
597 |
+
|
598 |
+
|
599 |
+
|
600 |
+
|
601 |
+
|
602 |
+
|
603 |
+
|
604 |
+
|
605 |
+
|
606 |
+
|
607 |
+
|
608 |
+
|
609 |
+
|
610 |
+
|
611 |
+
|
612 |
+
|
613 |
+
|
614 |
+
|
615 |
+
|
616 |
+
|
617 |
+
|
618 |
+
|
619 |
+
|
620 |
+
|
621 |
+
|
622 |
+
|
623 |
+
|
624 |
+
|
625 |
+
|
626 |
+
|
627 |
+
|
628 |
+
|
629 |
+
|
630 |
+
|
631 |
+
|
632 |
+
|
633 |
+
|
634 |
+
|
635 |
+
|
636 |
+
|
637 |
+
|
638 |
+
|
639 |
+
|
640 |
+
|
641 |
+
|
642 |
+
|
643 |
+
|
644 |
+
|
645 |
+
|
646 |
+
|
647 |
+
|
648 |
+
|
649 |
+
|
650 |
+
|
651 |
+
|
652 |
+
|
653 |
+
|
654 |
+
|
655 |
+
|
656 |
+
|
657 |
+
|
658 |
+
|
659 |
+
|
660 |
+
|
661 |
+
|
662 |
+
|
663 |
+
|
664 |
+
|
665 |
+
|
666 |
+
|
667 |
+
|
668 |
+
|
669 |
+
|
670 |
+
|
671 |
+
|
672 |
+
|
673 |
+
|
674 |
+
|
675 |
+
|
676 |
+
|
677 |
+
|
678 |
+
|
679 |
+
|
680 |
+
|
681 |
+
|
682 |
+
|
683 |
+
|
684 |
+
|
685 |
+
|
686 |
+
|
687 |
+
|
688 |
+
|
689 |
+
|
690 |
+
|
691 |
+
|
692 |
+
|
693 |
+
|
694 |
+
|
695 |
+
|
696 |
+
|
697 |
+
|
698 |
+
|
699 |
+
|
700 |
+
|
701 |
+
|
702 |
+
|
703 |
+
|
704 |
+
|
705 |
+
|
706 |
+
|
707 |
+
|
708 |
+
|
709 |
+
|
710 |
+
|
711 |
+
|
712 |
+
|
713 |
+
|
714 |
+
|
715 |
+
|
716 |
+
|
717 |
+
|
718 |
+
|
719 |
+
|
720 |
+
|
721 |
+
|
722 |
+
|
723 |
+
|
724 |
+
|
725 |
+
|
726 |
+
|
727 |
+
|
728 |
+
|
729 |
+
|
730 |
+
|
731 |
+
|
732 |
+
|
733 |
+
|
734 |
+
|
735 |
+
|
736 |
+
|
737 |
+
|
738 |
+
|
739 |
+
|
740 |
+
|
741 |
+
|
742 |
+
|
743 |
+
|
744 |
+
|
745 |
+
|
746 |
+
|
747 |
+
|
748 |
+
|
749 |
+
|
750 |
+
|
751 |
+
|
752 |
+
|
753 |
+
|
754 |
+
|
755 |
+
|
756 |
+
|
757 |
+
|
758 |
+
|
759 |
+
|
760 |
+
|
761 |
+
|
762 |
+
|
763 |
+
|
764 |
+
|
765 |
+
|
766 |
+
|
767 |
+
|
768 |
+
|
769 |
+
|
770 |
+
|
771 |
+
|
772 |
+
|
773 |
+
|
774 |
+
|
775 |
+
|
776 |
+
|
777 |
+
|
778 |
+
|
779 |
+
|
780 |
+
|
781 |
+
|
782 |
+
|
783 |
+
|
784 |
+
|
785 |
+
|
786 |
+
|
787 |
+
|
788 |
+
|
789 |
+
|
790 |
+
|
791 |
+
|
792 |
+
|
793 |
+
|
794 |
+
|
795 |
+
|
796 |
+
|
797 |
+
|
798 |
+
|
799 |
+
|
800 |
+
|
801 |
+
|
802 |
+
|
803 |
+
|
804 |
+
|
805 |
+
|
806 |
+
|
807 |
+
|
808 |
+
|
809 |
+
|
810 |
+
|
811 |
+
|
812 |
+
|
813 |
+
|
814 |
+
|
815 |
+
|
816 |
+
|
817 |
+
|
818 |
+
|
819 |
+
|
820 |
+
|
821 |
+
|
822 |
+
|
823 |
+
|
824 |
+
|
825 |
+
|
826 |
+
|
827 |
+
|
828 |
+
|
829 |
+
|
830 |
+
|
831 |
+
|
832 |
+
|
833 |
+
|
834 |
+
|
835 |
+
|
836 |
+
|
837 |
+
|
838 |
+
|
839 |
+
|
840 |
+
|
841 |
+
|
842 |
+
|
843 |
+
|
844 |
+
|
845 |
+
|
846 |
+
|
847 |
+
|
848 |
+
|
849 |
+
|
850 |
+
|
851 |
+
|
852 |
+
|
853 |
+
|
854 |
+
|
855 |
+
|
856 |
+
|
857 |
+
|
858 |
+
|
859 |
+
|
860 |
+
|
861 |
+
|
862 |
+
|
863 |
+
|
864 |
+
|
865 |
+
|
866 |
+
|
867 |
+
|
868 |
+
|
869 |
+
|
870 |
+
|
871 |
+
|
872 |
+
|
873 |
+
|
874 |
+
|
875 |
+
|
876 |
+
|
877 |
+
|
878 |
+
|
879 |
+
|
880 |
+
|
881 |
+
|
882 |
+
|
883 |
+
|
884 |
+
|
885 |
+
|
886 |
+
|
887 |
+
|
888 |
+
|
889 |
+
|
890 |
+
|
891 |
+
|
892 |
+
|
893 |
+
|
894 |
+
|
895 |
+
|
896 |
+
|
897 |
+
|
898 |
+
|
899 |
+
|
900 |
+
|
901 |
+
|
902 |
+
|
903 |
+
|
904 |
+
|
905 |
+
|
906 |
+
|
907 |
+
|
908 |
+
|
909 |
+
|
910 |
+
|
911 |
+
|
912 |
+
|
913 |
+
|
914 |
+
|
915 |
+
|
916 |
+
|
917 |
+
|
918 |
+
|
919 |
+
|
920 |
+
|
921 |
+
|
922 |
+
|
923 |
+
|
924 |
+
|
925 |
+
|
926 |
+
|
927 |
+
|
928 |
+
|
929 |
+
|
930 |
+
|
931 |
+
|
932 |
+
|
933 |
+
|
934 |
+
|
935 |
+
|
936 |
+
|
937 |
+
|
938 |
+
|
939 |
+
|
940 |
+
|
941 |
+
|
942 |
+
|
943 |
+
|
944 |
+
|
945 |
+
|
946 |
+
|
947 |
+
|
948 |
+
|
949 |
+
|
950 |
+
|
951 |
+
|
952 |
+
|
953 |
+
|
954 |
+
|
955 |
+
|
956 |
+
|
957 |
+
|
958 |
+
|
959 |
+
|
960 |
+
|
961 |
+
|
962 |
+
|
963 |
+
|
964 |
+
|
965 |
+
|
966 |
+
|
967 |
+
|
968 |
+
|
969 |
+
|
970 |
+
|
971 |
+
|
972 |
+
|
973 |
+
|
974 |
+
|
975 |
+
|
976 |
+
|
977 |
+
|
978 |
+
|
979 |
+
|
980 |
+
|
981 |
+
|
982 |
+
|
983 |
+
|
984 |
+
|
985 |
+
|
986 |
+
|
987 |
+
|
988 |
+
|
989 |
+
|
990 |
+
|
991 |
+
|
992 |
+
|
993 |
+
|
994 |
+
|
995 |
+
|
996 |
+
|
997 |
+
|
998 |
+
|
999 |
+
|
1000 |
+
|
1001 |
+
|
1002 |
+
|
1003 |
+
|
1004 |
+
|
1005 |
+
|
1006 |
+
|
1007 |
+
|
1008 |
+
|
1009 |
+
|
1010 |
+
|
1011 |
+
|
1012 |
+
|
1013 |
+
|
1014 |
+
|
1015 |
+
|
1016 |
+
|
1017 |
+
|
1018 |
+
|
1019 |
+
|
1020 |
+
|
1021 |
+
|
1022 |
+
|
1023 |
+
|
1024 |
+
|
1025 |
+
|
1026 |
+
|
1027 |
+
|
1028 |
+
|
1029 |
+
|
1030 |
+
|
1031 |
+
|
1032 |
+
|
1033 |
+
|
1034 |
+
|
1035 |
+
|
1036 |
+
|
1037 |
+
|
1038 |
+
|
1039 |
+
|
1040 |
+
|
1041 |
+
|
1042 |
+
|
1043 |
+
|
1044 |
+
|
1045 |
+
|
1046 |
+
|
1047 |
+
|
1048 |
+
|
1049 |
+
|
1050 |
+
|
1051 |
+
|
1052 |
+
|
1053 |
+
|
1054 |
+
|
1055 |
+
|
1056 |
+
|
1057 |
+
|
1058 |
+
|
1059 |
+
|
1060 |
+
|
1061 |
+
|
1062 |
+
|
1063 |
+
|
1064 |
+
|
1065 |
+
|
1066 |
+
|
1067 |
+
|
1068 |
+
|
1069 |
+
|
1070 |
+
|
1071 |
+
|
1072 |
+
|
1073 |
+
|
1074 |
+
|
1075 |
+
|
1076 |
+
|
1077 |
+
|
1078 |
+
|
1079 |
+
|
1080 |
+
|
1081 |
+
|
1082 |
+
|
1083 |
+
|
1084 |
+
|
1085 |
+
|
1086 |
+
|
1087 |
+
|
1088 |
+
|
1089 |
+
|
1090 |
+
|
1091 |
+
|
1092 |
+
|
1093 |
+
|
1094 |
+
|
1095 |
+
|
1096 |
+
|
1097 |
+
|
1098 |
+
|
1099 |
+
|
1100 |
+
|
1101 |
+
|
1102 |
+
|
1103 |
+
|
1104 |
+
|
1105 |
+
|
1106 |
+
|
1107 |
+
|
1108 |
+
|
1109 |
+
|
1110 |
+
|
1111 |
+
|
1112 |
+
|
1113 |
+
|
1114 |
+
|
1115 |
+
|
1116 |
+
|
1117 |
+
|
1118 |
+
|
1119 |
+
|
1120 |
+
|
1121 |
+
|
1122 |
+
|
1123 |
+
|
1124 |
+
|
1125 |
+
|
1126 |
+
|
1127 |
+
|
1128 |
+
|
1129 |
+
|
1130 |
+
|
1131 |
+
|
1132 |
+
|
1133 |
+
|
1134 |
+
|
1135 |
+
|
1136 |
+
|
1137 |
+
|
1138 |
+
|
1139 |
+
|
1140 |
+
|
1141 |
+
|
1142 |
+
|
1143 |
+
|
1144 |
+
|
1145 |
+
|
1146 |
+
|
1147 |
+
|
1148 |
+
|
1149 |
+
|
1150 |
+
|
1151 |
+
|
1152 |
+
|
1153 |
+
|
1154 |
+
|
1155 |
+
|
1156 |
+
|
1157 |
+
|
1158 |
+
|
1159 |
+
|
1160 |
+
|
1161 |
+
|
1162 |
+
|
1163 |
+
|
1164 |
+
|
1165 |
+
|
1166 |
+
|
1167 |
+
|
1168 |
+
|
1169 |
+
|
1170 |
+
|
1171 |
+
|
1172 |
+
|
1173 |
+
|
1174 |
+
|
1175 |
+
|
1176 |
+
|
1177 |
+
|
1178 |
+
|
1179 |
+
|
1180 |
+
|
1181 |
+
|
1182 |
+
|
1183 |
+
|
1184 |
+
|
1185 |
+
|
1186 |
+
|
1187 |
+
|
1188 |
+
|
1189 |
+
|
1190 |
+
|
1191 |
+
|
1192 |
+
|
1193 |
+
|
1194 |
+
|
1195 |
+
|
1196 |
+
|
1197 |
+
|
1198 |
+
|
1199 |
+
|
1200 |
+
|
1201 |
+
|
1202 |
+
|
1203 |
+
|
1204 |
+
|
1205 |
+
|
1206 |
+
|
1207 |
+
|
1208 |
+
|
1209 |
+
|
1210 |
+
|
1211 |
+
|
1212 |
+
|
1213 |
+
|
1214 |
+
|
1215 |
+
|
1216 |
+
|
1217 |
+
|
1218 |
+
|
1219 |
+
|
1220 |
+
|
1221 |
+
|
1222 |
+
|
1223 |
+
|
1224 |
+
|
1225 |
+
|
1226 |
+
|
1227 |
+
|
1228 |
+
|
1229 |
+
|
1230 |
+
|
1231 |
+
|
1232 |
+
|
1233 |
+
|
1234 |
+
|
1235 |
+
|
1236 |
+
|
1237 |
+
|
1238 |
+
|
1239 |
+
|
1240 |
+
|
1241 |
+
|
1242 |
+
|
1243 |
+
|
1244 |
+
|
1245 |
+
|
1246 |
+
|
1247 |
+
|
1248 |
+
|
1249 |
+
|
1250 |
+
|
1251 |
+
|
1252 |
+
|
1253 |
+
|
1254 |
+
|
1255 |
+
|
1256 |
+
|
1257 |
+
|
1258 |
+
|
1259 |
+
|
1260 |
+
|
1261 |
+
|
1262 |
+
|
1263 |
+
|
1264 |
+
|
1265 |
+
|
1266 |
+
|
1267 |
+
|
1268 |
+
|
1269 |
+
|
1270 |
+
|
1271 |
+
|
1272 |
+
|
1273 |
+
|
1274 |
+
|
1275 |
+
|
1276 |
+
|
1277 |
+
|
1278 |
+
|
1279 |
+
|
1280 |
+
|
1281 |
+
|
1282 |
+
|
1283 |
+
|
1284 |
+
|
1285 |
+
|
1286 |
+
|
1287 |
+
|
1288 |
+
|
1289 |
+
|
1290 |
+
|
1291 |
+
|
1292 |
+
|
1293 |
+
|
1294 |
+
|
1295 |
+
|
1296 |
+
|
1297 |
+
|
1298 |
+
|
1299 |
+
|
1300 |
+
|
1301 |
+
|
1302 |
+
|
1303 |
+
|
1304 |
+
|
1305 |
+
|
1306 |
+
|
1307 |
+
|
1308 |
+
|
1309 |
+
|
1310 |
+
|
1311 |
+
|
1312 |
+
|
1313 |
+
|
1314 |
+
|
1315 |
+
|
1316 |
+
|
1317 |
+
|
1318 |
+
|
1319 |
+
|
1320 |
+
|
1321 |
+
|
1322 |
+
|
1323 |
+
|
1324 |
+
|
1325 |
+
|
1326 |
+
|
1327 |
+
|
1328 |
+
|
1329 |
+
|
1330 |
+
|
1331 |
+
|
1332 |
+
|
1333 |
+
|
1334 |
+
|
1335 |
+
|
1336 |
+
|
1337 |
+
|
1338 |
+
|
1339 |
+
|
1340 |
+
|
1341 |
+
|
1342 |
+
|
1343 |
+
|
1344 |
+
|
1345 |
+
|
1346 |
+
|
1347 |
+
|
1348 |
+
|
1349 |
+
|
1350 |
+
|
1351 |
+
|
1352 |
+
|
1353 |
+
|
1354 |
+
|
1355 |
+
|
1356 |
+
|
1357 |
+
|
1358 |
+
|
1359 |
+
|
1360 |
+
|
1361 |
+
|
1362 |
+
|
1363 |
+
|
1364 |
+
|
1365 |
+
|
1366 |
+
|
1367 |
+
|
1368 |
+
|
1369 |
+
|
1370 |
+
|
1371 |
+
|
1372 |
+
|
1373 |
+
|
1374 |
+
|
1375 |
+
|
1376 |
+
|
1377 |
+
|
1378 |
+
|
1379 |
+
|
1380 |
+
|
1381 |
+
|
1382 |
+
|
1383 |
+
|
1384 |
+
|
1385 |
+
|
1386 |
+
|
1387 |
+
|
1388 |
+
|
1389 |
+
|
1390 |
+
|
1391 |
+
|
1392 |
+
|
1393 |
+
|
1394 |
+
|
1395 |
+
|
1396 |
+
|
1397 |
+
|
1398 |
+
|
1399 |
+
|
1400 |
+
|
1401 |
+
|
1402 |
+
|
1403 |
+
|
1404 |
+
|
1405 |
+
|
1406 |
+
|
1407 |
+
|
1408 |
+
|
1409 |
+
|
1410 |
+
|
1411 |
+
|
1412 |
+
|
1413 |
+
|
1414 |
+
|
1415 |
+
|
1416 |
+
|
1417 |
+
|
1418 |
+
|
1419 |
+
|
1420 |
+
|
1421 |
+
|
1422 |
+
|
1423 |
+
|
1424 |
+
|
1425 |
+
|
1426 |
+
|
1427 |
+
|
1428 |
+
|
1429 |
+
|
1430 |
+
|
1431 |
+
|
1432 |
+
|
1433 |
+
|
1434 |
+
|
1435 |
+
|
1436 |
+
|
1437 |
+
|
1438 |
+
|
1439 |
+
|
1440 |
+
|
1441 |
+
|
1442 |
+
|
1443 |
+
|
1444 |
+
|
1445 |
+
|
1446 |
+
|
1447 |
+
|
1448 |
+
|
1449 |
+
|
1450 |
+
|
1451 |
+
|
1452 |
+
|
1453 |
+
|
1454 |
+
|
1455 |
+
|
1456 |
+
|
1457 |
+
|
1458 |
+
|
1459 |
+
|
1460 |
+
|
1461 |
+
|
1462 |
+
|
1463 |
+
|
1464 |
+
|
1465 |
+
|
1466 |
+
|
1467 |
+
|
1468 |
+
|
1469 |
+
|
1470 |
+
|
1471 |
+
|
1472 |
+
|
1473 |
+
|
1474 |
+
|
1475 |
+
|
1476 |
+
|
1477 |
+
|
1478 |
+
|
1479 |
+
|
1480 |
+
|
1481 |
+
|
1482 |
+
|
1483 |
+
|
1484 |
+
|
1485 |
+
|
1486 |
+
|
1487 |
+
|
1488 |
+
|
1489 |
+
|
1490 |
+
|
1491 |
+
|
1492 |
+
|
1493 |
+
|
1494 |
+
|
1495 |
+
|
1496 |
+
|
1497 |
+
|
1498 |
+
|
1499 |
+
|
1500 |
+
|
1501 |
+
|
1502 |
+
|
1503 |
+
|
1504 |
+
|
1505 |
+
|
1506 |
+
|
1507 |
+
|
1508 |
+
|
1509 |
+
|
1510 |
+
|
1511 |
+
|
1512 |
+
|
1513 |
+
|
1514 |
+
|
1515 |
+
|
1516 |
+
|
1517 |
+
|
1518 |
+
|
1519 |
+
|
1520 |
+
|
1521 |
+
|
1522 |
+
|
1523 |
+
|
1524 |
+
|
1525 |
+
|
1526 |
+
|
1527 |
+
|
1528 |
+
|
1529 |
+
|
1530 |
+
|
1531 |
+
|
1532 |
+
|
1533 |
+
|
1534 |
+
|
1535 |
+
|
1536 |
+
|
1537 |
+
|
1538 |
+
|
1539 |
+
|
1540 |
+
|
1541 |
+
|
1542 |
+
|
1543 |
+
|
1544 |
+
|
1545 |
+
|
1546 |
+
|
1547 |
+
|
1548 |
+
|
1549 |
+
|
1550 |
+
|
1551 |
+
|
1552 |
+
|
1553 |
+
|
1554 |
+
|
1555 |
+
|
1556 |
+
|
1557 |
+
|
1558 |
+
|
1559 |
+
|
1560 |
+
|
1561 |
+
|
1562 |
+
|
1563 |
+
|
1564 |
+
|
1565 |
+
|
1566 |
+
|
1567 |
+
|
1568 |
+
|
1569 |
+
|
1570 |
+
|
1571 |
+
|
1572 |
+
|
1573 |
+
|
1574 |
+
|
1575 |
+
|
1576 |
+
|
1577 |
+
|
1578 |
+
|
1579 |
+
|
1580 |
+
|
1581 |
+
|
1582 |
+
|
1583 |
+
|
1584 |
+
|
1585 |
+
|
1586 |
+
|
1587 |
+
|
1588 |
+
|
1589 |
+
|
1590 |
+
|
1591 |
+
|
1592 |
+
|
1593 |
+
|
1594 |
+
|
1595 |
+
|
1596 |
+
|
1597 |
+
|
1598 |
+
|
1599 |
+
|
1600 |
+
|
1601 |
+
|
1602 |
+
|
1603 |
+
|
1604 |
+
|
1605 |
+
|
1606 |
+
|
1607 |
+
|
1608 |
+
|
1609 |
+
|
1610 |
+
|
1611 |
+
|
1612 |
+
|
1613 |
+
|
1614 |
+
|
1615 |
+
|
1616 |
+
|
1617 |
+
|
1618 |
+
|
1619 |
+
|
1620 |
+
|
1621 |
+
|
1622 |
+
|
1623 |
+
|
1624 |
+
|
1625 |
+
|
1626 |
+
|
1627 |
+
|
1628 |
+
|
1629 |
+
|
1630 |
+
|
1631 |
+
|
1632 |
+
|
1633 |
+
|
1634 |
+
|
1635 |
+
|
1636 |
+
|
1637 |
+
|
1638 |
+
|
1639 |
+
|
1640 |
+
|
1641 |
+
|
1642 |
+
|
1643 |
+
|
1644 |
+
|
1645 |
+
|
1646 |
+
|
1647 |
+
|
1648 |
+
|
1649 |
+
|
1650 |
+
|
1651 |
+
|
1652 |
+
|
1653 |
+
|
1654 |
+
|
1655 |
+
|
1656 |
+
|
1657 |
+
|
1658 |
+
|
1659 |
+
|
1660 |
+
|
1661 |
+
|
1662 |
+
|
1663 |
+
|
1664 |
+
|
1665 |
+
|
1666 |
+
|
1667 |
+
|
1668 |
+
|
1669 |
+
|
1670 |
+
|
1671 |
+
|
1672 |
+
|
1673 |
+
|
1674 |
+
|
1675 |
+
|
1676 |
+
|
1677 |
+
|
1678 |
+
|
1679 |
+
|
1680 |
+
|
1681 |
+
|
1682 |
+
|
1683 |
+
|
1684 |
+
|
1685 |
+
|
1686 |
+
|
1687 |
+
|
1688 |
+
|
1689 |
+
|
1690 |
+
|
1691 |
+
|
1692 |
+
|
1693 |
+
|
1694 |
+
|
1695 |
+
|
1696 |
+
|
1697 |
+
|
1698 |
+
|
1699 |
+
|
1700 |
+
|
1701 |
+
|
1702 |
+
|
1703 |
+
|
1704 |
+
|
1705 |
+
|
1706 |
+
|
1707 |
+
|
1708 |
+
|
1709 |
+
|
1710 |
+
|
1711 |
+
|
1712 |
+
|
1713 |
+
|
1714 |
+
|
1715 |
+
|
1716 |
+
|
1717 |
+
|
1718 |
+
|
1719 |
+
|
1720 |
+
|
1721 |
+
|
1722 |
+
|
1723 |
+
|
1724 |
+
|
1725 |
+
|
1726 |
+
|
1727 |
+
|
1728 |
+
|
1729 |
+
|
1730 |
+
|
1731 |
+
|
1732 |
+
|
1733 |
+
|
1734 |
+
|
1735 |
+
|
1736 |
+
|
1737 |
+
|
1738 |
+
|
1739 |
+
|
1740 |
+
|
1741 |
+
|
1742 |
+
|
1743 |
+
|
1744 |
+
|
1745 |
+
|
1746 |
+
|
1747 |
+
|
1748 |
+
|
1749 |
+
|
1750 |
+
|
1751 |
+
|
1752 |
+
|
1753 |
+
|
1754 |
+
|
1755 |
+
|
1756 |
+
|
1757 |
+
|
1758 |
+
|
1759 |
+
|
1760 |
+
|
1761 |
+
|
1762 |
+
|
1763 |
+
|
1764 |
+
|
1765 |
+
|
1766 |
+
|
1767 |
+
|
1768 |
+
|
1769 |
+
|
1770 |
+
|
1771 |
+
|
1772 |
+
|
1773 |
+
|
1774 |
+
|
1775 |
+
|
1776 |
+
|
1777 |
+
|
1778 |
+
|
1779 |
+
|
1780 |
+
|
1781 |
+
|
1782 |
+
|
1783 |
+
|
1784 |
+
|
1785 |
+
|
1786 |
+
|
1787 |
+
|
1788 |
+
|
1789 |
+
|
1790 |
+
|
1791 |
+
|
1792 |
+
|
1793 |
+
|
1794 |
+
|
1795 |
+
|
1796 |
+
|
1797 |
+
|
1798 |
+
|
1799 |
+
|
1800 |
+
|
1801 |
+
|
1802 |
+
|
1803 |
+
|
1804 |
+
|
1805 |
+
|
1806 |
+
|
1807 |
+
|
1808 |
+
|
1809 |
+
|
1810 |
+
|
1811 |
+
|
1812 |
+
|
1813 |
+
|
1814 |
+
|
1815 |
+
|
1816 |
+
|
1817 |
+
|
1818 |
+
|
1819 |
+
|
1820 |
+
|
1821 |
+
|
1822 |
+
|
1823 |
+
|
1824 |
+
|
1825 |
+
|
1826 |
+
|
1827 |
+
|
1828 |
+
|
1829 |
+
|
1830 |
+
|
1831 |
+
|
1832 |
+
|
1833 |
+
|
1834 |
+
|
1835 |
+
|
1836 |
+
|
1837 |
+
|
1838 |
+
|
1839 |
+
|
1840 |
+
|
1841 |
+
|
1842 |
+
|
1843 |
+
|
1844 |
+
|
1845 |
+
|
1846 |
+
|
1847 |
+
|
1848 |
+
|
1849 |
+
|
1850 |
+
|
1851 |
+
|
1852 |
+
|
1853 |
+
|
1854 |
+
|
1855 |
+
|
1856 |
+
|
1857 |
+
|
1858 |
+
|
1859 |
+
|
1860 |
+
|
1861 |
+
|
1862 |
+
|
1863 |
+
|
1864 |
+
|
1865 |
+
|
1866 |
+
|
1867 |
+
|
1868 |
+
|
1869 |
+
|
1870 |
+
|
1871 |
+
|
1872 |
+
|
1873 |
+
|
1874 |
+
|
1875 |
+
|
1876 |
+
|
1877 |
+
|
1878 |
+
|
1879 |
+
|
1880 |
+
|
1881 |
+
|
1882 |
+
|
1883 |
+
|
1884 |
+
|
1885 |
+
|
1886 |
+
|
1887 |
+
|
1888 |
+
|
1889 |
+
|
1890 |
+
|
1891 |
+
|
1892 |
+
|
1893 |
+
|
1894 |
+
|
1895 |
+
|
1896 |
+
|
1897 |
+
|
1898 |
+
|
1899 |
+
|
1900 |
+
|
1901 |
+
|
1902 |
+
|
1903 |
+
|
1904 |
+
preprocess train dataset (num_proc=32): 100%|██████████████████████| 31056744/31056744 [54:46<00:00, 9450.26 examples/s]
|
1905 |
+
|
1906 |
+
|
1907 |
+
|
1908 |
+
|
1909 |
+
|
1910 |
+
|
1911 |
+
|
1912 |
+
|
1913 |
+
|
1914 |
+
|
1915 |
+
|
1916 |
+
|
1917 |
+
|
1918 |
+
|
1919 |
+
|
1920 |
+
|
1921 |
+
|
1922 |
+
|
1923 |
+
|
1924 |
+
|
1925 |
+
|
1926 |
+
|
1927 |
+
|
1928 |
+
|
1929 |
+
|
1930 |
+
|
1931 |
+
|
1932 |
+
|
1933 |
+
|
1934 |
+
|
1935 |
+
|
1936 |
+
|
1937 |
+
|
1938 |
+
|
1939 |
+
|
1940 |
+
|
1941 |
+
|
1942 |
+
|
1943 |
+
|
1944 |
+
|
1945 |
+
|
1946 |
+
|
1947 |
+
|
1948 |
+
|
1949 |
+
|
1950 |
+
|
1951 |
+
|
1952 |
+
|
1953 |
+
|
1954 |
+
|
1955 |
+
|
1956 |
+
|
1957 |
+
|
1958 |
+
|
1959 |
+
|
1960 |
+
|
1961 |
+
|
1962 |
+
|
1963 |
+
|
1964 |
+
|
1965 |
+
|
1966 |
+
|
1967 |
+
|
1968 |
+
|
1969 |
+
|
1970 |
+
|
1971 |
+
|
1972 |
+
|
1973 |
+
|
1974 |
+
|
1975 |
+
|
1976 |
+
|
1977 |
+
|
1978 |
+
|
1979 |
+
|
1980 |
+
|
1981 |
+
|
1982 |
+
|
1983 |
+
|
1984 |
+
|
1985 |
+
|
1986 |
+
|
1987 |
+
|
1988 |
+
|
1989 |
+
|
1990 |
+
|
1991 |
+
|
1992 |
+
|
1993 |
+
|
1994 |
+
|
1995 |
+
|
1996 |
+
|
1997 |
+
|
1998 |
+
|
1999 |
+
|
2000 |
+
|
2001 |
+
|
2002 |
+
|
2003 |
+
|
2004 |
+
|
2005 |
+
|
2006 |
+
|
2007 |
+
|
2008 |
+
|
2009 |
+
|
2010 |
+
|
2011 |
+
|
2012 |
+
|
2013 |
+
|
2014 |
+
|
2015 |
+
|
2016 |
+
|
2017 |
+
|
2018 |
+
|
2019 |
+
|
2020 |
+
|
2021 |
+
|
2022 |
+
|
2023 |
+
|
2024 |
+
|
2025 |
+
|
2026 |
+
|
2027 |
+
|
2028 |
+
|
2029 |
+
|
2030 |
+
|
2031 |
+
|
2032 |
+
|
2033 |
+
|
2034 |
+
|
2035 |
+
|
2036 |
+
|
2037 |
+
|
2038 |
+
|
2039 |
+
|
2040 |
+
|
2041 |
+
|
2042 |
+
|
2043 |
+
|
2044 |
+
|
2045 |
+
|
2046 |
+
|
2047 |
+
|
2048 |
+
|
2049 |
+
|
2050 |
+
|
2051 |
+
|
2052 |
+
|
2053 |
+
|
2054 |
+
|
2055 |
+
|
2056 |
+
|
2057 |
+
|
2058 |
+
|
2059 |
+
|
2060 |
+
|
2061 |
+
|
2062 |
+
|
2063 |
+
|
2064 |
+
|
2065 |
+
filtering train dataset (num_proc=32): 100%|██████████████████████| 31056744/31056744 [05:21<00:00, 96735.06 examples/s]
|
2066 |
+
04/16/2024 18:24:47 - INFO - __main__ - max_steps is given, it will override any value given in num_train_epochs
|
2067 |
+
04/16/2024 18:25:15 - INFO - __main__ - ***** Running training *****
|
2068 |
+
04/16/2024 18:25:15 - INFO - __main__ - Num examples = 3200000
|
2069 |
+
04/16/2024 18:25:15 - INFO - __main__ - Num epochs = 1
|
2070 |
+
04/16/2024 18:25:15 - INFO - __main__ - Instantaneous batch size per device = 8
|
2071 |
+
04/16/2024 18:25:15 - INFO - __main__ - Gradient accumulation steps = 1
|
2072 |
+
04/16/2024 18:25:15 - INFO - __main__ - Total train batch size (w. parallel & distributed) = 64
|
2073 |
+
04/16/2024 18:25:15 - INFO - __main__ - Total optimization steps = 50000
|
2074 |
+
|
2075 |
+
Train steps ... : 0%| | 1/50000 [00:10<140:57:09, 10.15s/it]Traceback (most recent call last):
|
2076 |
+
File "/fsx/sanchit/mistral-debug-4bit/run_distillation.py", line 1474, in <module>
|
2077 |
+
main()
|
2078 |
+
File "/fsx/sanchit/mistral-debug-4bit/run_distillation.py", line 1326, in main
|
2079 |
+
loss, train_metric = train_step(batch, temperature=training_args.temperature)
|
2080 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
2081 |
+
File "/fsx/sanchit/mistral-debug-4bit/run_distillation.py", line 1211, in train_step
|
2082 |
+
kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"]) * temperature**2
|
2083 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
2084 |
+
File "/fsx/sanchit/mistral-debug-4bit/run_distillation.py", line 1183, in kl_divergence
|
2085 |
+
divergence = kl_loss(log_predicted_distribution, target_distribution)
|
2086 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
2087 |
+
File "/fsx/sanchit/miniconda3/envs/venv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1527, in _wrapped_call_impl
|
2088 |
+
return self._call_impl(*args, **kwargs)
|
2089 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
2090 |
+
File "/fsx/sanchit/miniconda3/envs/venv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1536, in _call_impl
|
2091 |
+
return forward_call(*args, **kwargs)
|
2092 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
2093 |
+
File "/fsx/sanchit/miniconda3/envs/venv/lib/python3.11/site-packages/torch/nn/modules/loss.py", line 470, in forward
|
2094 |
+
return F.kl_div(input, target, reduction=self.reduction, log_target=self.log_target)
|
2095 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
2096 |
+
File "/fsx/sanchit/miniconda3/envs/venv/lib/python3.11/site-packages/torch/nn/functional.py", line 2990, in kl_div
|
2097 |
+
reduced = torch.kl_div(input, target, reduction_enum, log_target=log_target)
|
2098 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
2099 |
+
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.95 GiB. GPU
|
2100 |
+
[rank0]: Traceback (most recent call last):
|
2101 |
+
[rank0]: File "/fsx/sanchit/mistral-debug-4bit/run_distillation.py", line 1474, in <module>
|
2102 |
+
[rank0]: main()
|
2103 |
+
[rank0]: File "/fsx/sanchit/mistral-debug-4bit/run_distillation.py", line 1326, in main
|
2104 |
+
[rank0]: loss, train_metric = train_step(batch, temperature=training_args.temperature)
|
2105 |
+
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
2106 |
+
[rank0]: File "/fsx/sanchit/mistral-debug-4bit/run_distillation.py", line 1211, in train_step
|
2107 |
+
[rank0]: kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"]) * temperature**2
|
2108 |
+
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
2109 |
+
[rank0]: File "/fsx/sanchit/mistral-debug-4bit/run_distillation.py", line 1183, in kl_divergence
|
2110 |
+
[rank0]: divergence = kl_loss(log_predicted_distribution, target_distribution)
|
2111 |
+
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
2112 |
+
[rank0]: File "/fsx/sanchit/miniconda3/envs/venv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1527, in _wrapped_call_impl
|
2113 |
+
[rank0]: return self._call_impl(*args, **kwargs)
|
2114 |
+
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
2115 |
+
[rank0]: File "/fsx/sanchit/miniconda3/envs/venv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1536, in _call_impl
|
2116 |
+
[rank0]: return forward_call(*args, **kwargs)
|
2117 |
+
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
2118 |
+
[rank0]: File "/fsx/sanchit/miniconda3/envs/venv/lib/python3.11/site-packages/torch/nn/modules/loss.py", line 470, in forward
|
2119 |
+
[rank0]: return F.kl_div(input, target, reduction=self.reduction, log_target=self.log_target)
|
2120 |
+
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
2121 |
+
[rank0]: File "/fsx/sanchit/miniconda3/envs/venv/lib/python3.11/site-packages/torch/nn/functional.py", line 2990, in kl_div
|
2122 |
+
[rank0]: reduced = torch.kl_div(input, target, reduction_enum, log_target=log_target)
|
2123 |
+
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
2124 |
+
[rank0]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.95 GiB. GPU
|
wandb/run-20240416_172306-uygw9yfk/files/requirements.txt
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==2.0.0
|
2 |
+
accelerate==0.29.2
|
3 |
+
aiohttp==3.9.1
|
4 |
+
aiosignal==1.3.1
|
5 |
+
annotated-types==0.6.0
|
6 |
+
anyio==4.2.0
|
7 |
+
appdirs==1.4.4
|
8 |
+
argon2-cffi-bindings==21.2.0
|
9 |
+
argon2-cffi==23.1.0
|
10 |
+
arrow==1.3.0
|
11 |
+
asttokens==2.4.1
|
12 |
+
astunparse==1.6.3
|
13 |
+
async-lru==2.0.4
|
14 |
+
attrs==23.1.0
|
15 |
+
audioread==3.0.1
|
16 |
+
babel==2.14.0
|
17 |
+
beautifulsoup4==4.12.3
|
18 |
+
bitsandbytes==0.43.1
|
19 |
+
bleach==6.1.0
|
20 |
+
brotli==1.0.9
|
21 |
+
cachetools==5.3.2
|
22 |
+
certifi==2023.11.17
|
23 |
+
cffi==1.16.0
|
24 |
+
chardet==5.2.0
|
25 |
+
charset-normalizer==2.0.4
|
26 |
+
click==8.1.7
|
27 |
+
comm==0.2.1
|
28 |
+
cryptography==41.0.7
|
29 |
+
datasets==2.18.1.dev0
|
30 |
+
debugpy==1.8.1
|
31 |
+
decorator==5.1.1
|
32 |
+
deepspeed==0.12.2
|
33 |
+
defusedxml==0.7.1
|
34 |
+
dill==0.3.7
|
35 |
+
docker-pycreds==0.4.0
|
36 |
+
docstring-parser==0.15
|
37 |
+
einops==0.7.0
|
38 |
+
evaluate==0.4.0
|
39 |
+
executing==2.0.1
|
40 |
+
fastjsonschema==2.19.1
|
41 |
+
filelock==3.13.1
|
42 |
+
flatbuffers==23.5.26
|
43 |
+
fqdn==1.5.1
|
44 |
+
frozenlist==1.4.1
|
45 |
+
fsspec==2023.10.0
|
46 |
+
gast==0.5.4
|
47 |
+
gitdb==4.0.11
|
48 |
+
gitpython==3.1.40
|
49 |
+
gmpy2==2.1.2
|
50 |
+
google-auth-oauthlib==1.2.0
|
51 |
+
google-auth==2.26.1
|
52 |
+
google-pasta==0.2.0
|
53 |
+
grpcio==1.60.0
|
54 |
+
h11==0.14.0
|
55 |
+
h5py==3.10.0
|
56 |
+
hf-transfer==0.1.5
|
57 |
+
hjson==3.1.0
|
58 |
+
httpcore==1.0.2
|
59 |
+
httpx==0.26.0
|
60 |
+
huggingface-hub==0.22.2
|
61 |
+
idna==3.4
|
62 |
+
ipdb==0.13.13
|
63 |
+
ipykernel==6.29.2
|
64 |
+
ipython==8.21.0
|
65 |
+
isoduration==20.11.0
|
66 |
+
jedi==0.19.1
|
67 |
+
jinja2==3.1.2
|
68 |
+
jiwer==3.0.3
|
69 |
+
joblib==1.3.2
|
70 |
+
json5==0.9.14
|
71 |
+
jsonpointer==2.4
|
72 |
+
jsonschema-specifications==2023.12.1
|
73 |
+
jsonschema==4.21.1
|
74 |
+
jupyter-client==8.6.0
|
75 |
+
jupyter-core==5.7.1
|
76 |
+
jupyter-events==0.9.0
|
77 |
+
jupyter-lsp==2.2.2
|
78 |
+
jupyter-server-terminals==0.5.2
|
79 |
+
jupyter-server==2.12.5
|
80 |
+
jupyterlab-pygments==0.3.0
|
81 |
+
jupyterlab-server==2.25.2
|
82 |
+
jupyterlab==4.1.1
|
83 |
+
keras==2.15.0
|
84 |
+
lazy-loader==0.3
|
85 |
+
libclang==16.0.6
|
86 |
+
librosa==0.10.1
|
87 |
+
llvmlite==0.41.1
|
88 |
+
markdown-it-py==3.0.0
|
89 |
+
markdown==3.5.1
|
90 |
+
markupsafe==2.1.1
|
91 |
+
matplotlib-inline==0.1.6
|
92 |
+
mdurl==0.1.2
|
93 |
+
mistune==3.0.2
|
94 |
+
mkl-fft==1.3.8
|
95 |
+
mkl-random==1.2.4
|
96 |
+
mkl-service==2.4.0
|
97 |
+
ml-dtypes==0.2.0
|
98 |
+
mpmath==1.3.0
|
99 |
+
msgpack==1.0.7
|
100 |
+
multidict==6.0.4
|
101 |
+
multiprocess==0.70.15
|
102 |
+
nbclient==0.9.0
|
103 |
+
nbconvert==7.16.0
|
104 |
+
nbformat==5.9.2
|
105 |
+
nest-asyncio==1.6.0
|
106 |
+
networkx==3.1
|
107 |
+
ninja==1.11.1.1
|
108 |
+
nltk==3.8.1
|
109 |
+
notebook-shim==0.2.3
|
110 |
+
numba==0.58.1
|
111 |
+
numpy==1.26.2
|
112 |
+
nvidia-cublas-cu12==12.1.3.1
|
113 |
+
nvidia-cuda-cupti-cu12==12.1.105
|
114 |
+
nvidia-cuda-nvrtc-cu12==12.1.105
|
115 |
+
nvidia-cuda-runtime-cu12==12.1.105
|
116 |
+
nvidia-cudnn-cu12==8.9.2.26
|
117 |
+
nvidia-cufft-cu12==11.0.2.54
|
118 |
+
nvidia-curand-cu12==10.3.2.106
|
119 |
+
nvidia-cusolver-cu12==11.4.5.107
|
120 |
+
nvidia-cusparse-cu12==12.1.0.106
|
121 |
+
nvidia-nccl-cu12==2.20.5
|
122 |
+
nvidia-nvjitlink-cu12==12.3.101
|
123 |
+
nvidia-nvtx-cu12==12.1.105
|
124 |
+
oauthlib==3.2.2
|
125 |
+
opt-einsum==3.3.0
|
126 |
+
overrides==7.7.0
|
127 |
+
packaging==23.2
|
128 |
+
pandas==2.1.4
|
129 |
+
pandocfilters==1.5.1
|
130 |
+
parso==0.8.3
|
131 |
+
peft==0.7.1
|
132 |
+
pexpect==4.9.0
|
133 |
+
pillow==10.2.0
|
134 |
+
pip==24.0
|
135 |
+
platformdirs==4.1.0
|
136 |
+
pooch==1.8.0
|
137 |
+
prometheus-client==0.19.0
|
138 |
+
prompt-toolkit==3.0.43
|
139 |
+
protobuf==3.20.2
|
140 |
+
psutil==5.9.7
|
141 |
+
ptyprocess==0.7.0
|
142 |
+
pure-eval==0.2.2
|
143 |
+
py-cpuinfo==9.0.0
|
144 |
+
pyarrow-hotfix==0.6
|
145 |
+
pyarrow==14.0.2
|
146 |
+
pyasn1-modules==0.3.0
|
147 |
+
pyasn1==0.5.1
|
148 |
+
pycparser==2.21
|
149 |
+
pydantic-core==2.16.1
|
150 |
+
pydantic==2.6.0
|
151 |
+
pygments==2.17.2
|
152 |
+
pynvml==11.5.0
|
153 |
+
pyopenssl==23.2.0
|
154 |
+
pysocks==1.7.1
|
155 |
+
python-dateutil==2.8.2
|
156 |
+
python-json-logger==2.0.7
|
157 |
+
pytorch-triton==3.0.0+989adb9a29
|
158 |
+
pytz==2023.3.post1
|
159 |
+
pyyaml==6.0.1
|
160 |
+
pyzmq==25.1.2
|
161 |
+
rapidfuzz==3.6.1
|
162 |
+
referencing==0.33.0
|
163 |
+
regex==2023.12.25
|
164 |
+
requests-oauthlib==1.3.1
|
165 |
+
requests==2.31.0
|
166 |
+
responses==0.18.0
|
167 |
+
rfc3339-validator==0.1.4
|
168 |
+
rfc3986-validator==0.1.1
|
169 |
+
rich==13.7.0
|
170 |
+
rpds-py==0.17.1
|
171 |
+
rsa==4.9
|
172 |
+
safetensors==0.4.1
|
173 |
+
scikit-learn==1.3.2
|
174 |
+
scipy==1.11.4
|
175 |
+
send2trash==1.8.2
|
176 |
+
sentencepiece==0.1.99
|
177 |
+
sentry-sdk==1.39.1
|
178 |
+
setproctitle==1.3.3
|
179 |
+
setuptools==68.2.2
|
180 |
+
shtab==1.6.5
|
181 |
+
six==1.16.0
|
182 |
+
smmap==5.0.1
|
183 |
+
sniffio==1.3.0
|
184 |
+
soundfile==0.12.1
|
185 |
+
soupsieve==2.5
|
186 |
+
soxr==0.3.7
|
187 |
+
stack-data==0.6.3
|
188 |
+
sympy==1.12
|
189 |
+
tensorboard-data-server==0.7.2
|
190 |
+
tensorboard==2.15.1
|
191 |
+
tensorflow-cpu==2.15.0.post1
|
192 |
+
tensorflow-estimator==2.15.0
|
193 |
+
tensorflow-io-gcs-filesystem==0.35.0
|
194 |
+
termcolor==2.4.0
|
195 |
+
terminado==0.18.0
|
196 |
+
threadpoolctl==3.2.0
|
197 |
+
tinycss2==1.2.1
|
198 |
+
tokenizers==0.15.0
|
199 |
+
torch==2.4.0.dev20240323+cu121
|
200 |
+
torchaudio==2.2.0.dev20240323+cu121
|
201 |
+
torchvision==0.19.0.dev20240323+cu121
|
202 |
+
tornado==6.4
|
203 |
+
tqdm==4.66.1
|
204 |
+
traitlets==5.14.1
|
205 |
+
transformers==4.39.0.dev0
|
206 |
+
triton==2.2.0
|
207 |
+
trl==0.7.7
|
208 |
+
types-python-dateutil==2.8.19.20240106
|
209 |
+
typing-extensions==4.10.0
|
210 |
+
tyro==0.7.0
|
211 |
+
tzdata==2023.3
|
212 |
+
uri-template==1.3.0
|
213 |
+
urllib3==1.26.18
|
214 |
+
wandb==0.16.1
|
215 |
+
wcwidth==0.2.13
|
216 |
+
webcolors==1.13
|
217 |
+
webencodings==0.5.1
|
218 |
+
websocket-client==1.7.0
|
219 |
+
werkzeug==3.0.1
|
220 |
+
wheel==0.41.2
|
221 |
+
wrapt==1.14.1
|
222 |
+
xxhash==3.4.1
|
223 |
+
yarl==1.9.4
|
wandb/run-20240416_172306-uygw9yfk/files/wandb-metadata.json
ADDED
@@ -0,0 +1,552 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"os": "Linux-5.15.0-1048-aws-x86_64-with-glibc2.31",
|
3 |
+
"python": "3.11.5",
|
4 |
+
"heartbeatAt": "2024-04-16T17:23:06.717620",
|
5 |
+
"startedAt": "2024-04-16T17:23:06.329363",
|
6 |
+
"docker": null,
|
7 |
+
"cuda": null,
|
8 |
+
"args": [
|
9 |
+
"config_mistral.yaml"
|
10 |
+
],
|
11 |
+
"state": "running",
|
12 |
+
"program": "/fsx/sanchit/mistral-debug-4bit/run_distillation.py",
|
13 |
+
"codePathLocal": "run_distillation.py",
|
14 |
+
"codePath": "run_distillation.py",
|
15 |
+
"host": "ip-26-0-164-187",
|
16 |
+
"username": "sanchit",
|
17 |
+
"executable": "/fsx/sanchit/miniconda3/envs/venv/bin/python",
|
18 |
+
"cpu_count": 96,
|
19 |
+
"cpu_count_logical": 96,
|
20 |
+
"cpu_freq": {
|
21 |
+
"current": 2659.601562499998,
|
22 |
+
"min": 0.0,
|
23 |
+
"max": 0.0
|
24 |
+
},
|
25 |
+
"cpu_freq_per_core": [
|
26 |
+
{
|
27 |
+
"current": 2649.998,
|
28 |
+
"min": 0.0,
|
29 |
+
"max": 0.0
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"current": 2649.998,
|
33 |
+
"min": 0.0,
|
34 |
+
"max": 0.0
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"current": 2649.998,
|
38 |
+
"min": 0.0,
|
39 |
+
"max": 0.0
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"current": 2649.998,
|
43 |
+
"min": 0.0,
|
44 |
+
"max": 0.0
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"current": 2649.998,
|
48 |
+
"min": 0.0,
|
49 |
+
"max": 0.0
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"current": 2649.998,
|
53 |
+
"min": 0.0,
|
54 |
+
"max": 0.0
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"current": 2649.998,
|
58 |
+
"min": 0.0,
|
59 |
+
"max": 0.0
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"current": 2649.998,
|
63 |
+
"min": 0.0,
|
64 |
+
"max": 0.0
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"current": 2649.998,
|
68 |
+
"min": 0.0,
|
69 |
+
"max": 0.0
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"current": 2649.998,
|
73 |
+
"min": 0.0,
|
74 |
+
"max": 0.0
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"current": 2649.998,
|
78 |
+
"min": 0.0,
|
79 |
+
"max": 0.0
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"current": 2649.998,
|
83 |
+
"min": 0.0,
|
84 |
+
"max": 0.0
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"current": 2649.998,
|
88 |
+
"min": 0.0,
|
89 |
+
"max": 0.0
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"current": 2649.998,
|
93 |
+
"min": 0.0,
|
94 |
+
"max": 0.0
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"current": 3571.94,
|
98 |
+
"min": 0.0,
|
99 |
+
"max": 0.0
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"current": 2649.998,
|
103 |
+
"min": 0.0,
|
104 |
+
"max": 0.0
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"current": 2649.998,
|
108 |
+
"min": 0.0,
|
109 |
+
"max": 0.0
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"current": 2649.998,
|
113 |
+
"min": 0.0,
|
114 |
+
"max": 0.0
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"current": 2649.998,
|
118 |
+
"min": 0.0,
|
119 |
+
"max": 0.0
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"current": 2649.998,
|
123 |
+
"min": 0.0,
|
124 |
+
"max": 0.0
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"current": 2649.998,
|
128 |
+
"min": 0.0,
|
129 |
+
"max": 0.0
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"current": 2649.998,
|
133 |
+
"min": 0.0,
|
134 |
+
"max": 0.0
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"current": 2649.998,
|
138 |
+
"min": 0.0,
|
139 |
+
"max": 0.0
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"current": 2649.998,
|
143 |
+
"min": 0.0,
|
144 |
+
"max": 0.0
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"current": 2649.998,
|
148 |
+
"min": 0.0,
|
149 |
+
"max": 0.0
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"current": 2649.998,
|
153 |
+
"min": 0.0,
|
154 |
+
"max": 0.0
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"current": 2649.998,
|
158 |
+
"min": 0.0,
|
159 |
+
"max": 0.0
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"current": 2649.998,
|
163 |
+
"min": 0.0,
|
164 |
+
"max": 0.0
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"current": 2649.998,
|
168 |
+
"min": 0.0,
|
169 |
+
"max": 0.0
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"current": 2649.998,
|
173 |
+
"min": 0.0,
|
174 |
+
"max": 0.0
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"current": 2649.998,
|
178 |
+
"min": 0.0,
|
179 |
+
"max": 0.0
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"current": 2649.998,
|
183 |
+
"min": 0.0,
|
184 |
+
"max": 0.0
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"current": 2649.998,
|
188 |
+
"min": 0.0,
|
189 |
+
"max": 0.0
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"current": 2649.998,
|
193 |
+
"min": 0.0,
|
194 |
+
"max": 0.0
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"current": 2649.998,
|
198 |
+
"min": 0.0,
|
199 |
+
"max": 0.0
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"current": 2649.998,
|
203 |
+
"min": 0.0,
|
204 |
+
"max": 0.0
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"current": 2649.998,
|
208 |
+
"min": 0.0,
|
209 |
+
"max": 0.0
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"current": 2649.998,
|
213 |
+
"min": 0.0,
|
214 |
+
"max": 0.0
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"current": 2649.998,
|
218 |
+
"min": 0.0,
|
219 |
+
"max": 0.0
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"current": 2649.998,
|
223 |
+
"min": 0.0,
|
224 |
+
"max": 0.0
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"current": 2649.998,
|
228 |
+
"min": 0.0,
|
229 |
+
"max": 0.0
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"current": 2649.998,
|
233 |
+
"min": 0.0,
|
234 |
+
"max": 0.0
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"current": 2649.998,
|
238 |
+
"min": 0.0,
|
239 |
+
"max": 0.0
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"current": 2649.998,
|
243 |
+
"min": 0.0,
|
244 |
+
"max": 0.0
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"current": 2649.998,
|
248 |
+
"min": 0.0,
|
249 |
+
"max": 0.0
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"current": 2649.998,
|
253 |
+
"min": 0.0,
|
254 |
+
"max": 0.0
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"current": 2649.998,
|
258 |
+
"min": 0.0,
|
259 |
+
"max": 0.0
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"current": 2649.998,
|
263 |
+
"min": 0.0,
|
264 |
+
"max": 0.0
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"current": 2649.998,
|
268 |
+
"min": 0.0,
|
269 |
+
"max": 0.0
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"current": 2649.998,
|
273 |
+
"min": 0.0,
|
274 |
+
"max": 0.0
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"current": 2649.998,
|
278 |
+
"min": 0.0,
|
279 |
+
"max": 0.0
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"current": 2649.998,
|
283 |
+
"min": 0.0,
|
284 |
+
"max": 0.0
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"current": 2649.998,
|
288 |
+
"min": 0.0,
|
289 |
+
"max": 0.0
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"current": 2649.998,
|
293 |
+
"min": 0.0,
|
294 |
+
"max": 0.0
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"current": 2649.998,
|
298 |
+
"min": 0.0,
|
299 |
+
"max": 0.0
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"current": 2649.998,
|
303 |
+
"min": 0.0,
|
304 |
+
"max": 0.0
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"current": 2649.998,
|
308 |
+
"min": 0.0,
|
309 |
+
"max": 0.0
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"current": 2649.998,
|
313 |
+
"min": 0.0,
|
314 |
+
"max": 0.0
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"current": 2649.998,
|
318 |
+
"min": 0.0,
|
319 |
+
"max": 0.0
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"current": 2649.998,
|
323 |
+
"min": 0.0,
|
324 |
+
"max": 0.0
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"current": 2649.998,
|
328 |
+
"min": 0.0,
|
329 |
+
"max": 0.0
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"current": 2649.998,
|
333 |
+
"min": 0.0,
|
334 |
+
"max": 0.0
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"current": 2649.998,
|
338 |
+
"min": 0.0,
|
339 |
+
"max": 0.0
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"current": 2649.998,
|
343 |
+
"min": 0.0,
|
344 |
+
"max": 0.0
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"current": 2649.998,
|
348 |
+
"min": 0.0,
|
349 |
+
"max": 0.0
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"current": 2649.998,
|
353 |
+
"min": 0.0,
|
354 |
+
"max": 0.0
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"current": 2649.998,
|
358 |
+
"min": 0.0,
|
359 |
+
"max": 0.0
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"current": 2649.998,
|
363 |
+
"min": 0.0,
|
364 |
+
"max": 0.0
|
365 |
+
},
|
366 |
+
{
|
367 |
+
"current": 2649.998,
|
368 |
+
"min": 0.0,
|
369 |
+
"max": 0.0
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"current": 2649.998,
|
373 |
+
"min": 0.0,
|
374 |
+
"max": 0.0
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"current": 2649.998,
|
378 |
+
"min": 0.0,
|
379 |
+
"max": 0.0
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"current": 2649.998,
|
383 |
+
"min": 0.0,
|
384 |
+
"max": 0.0
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"current": 2649.998,
|
388 |
+
"min": 0.0,
|
389 |
+
"max": 0.0
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"current": 2649.998,
|
393 |
+
"min": 0.0,
|
394 |
+
"max": 0.0
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"current": 2649.998,
|
398 |
+
"min": 0.0,
|
399 |
+
"max": 0.0
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"current": 2649.998,
|
403 |
+
"min": 0.0,
|
404 |
+
"max": 0.0
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"current": 2649.998,
|
408 |
+
"min": 0.0,
|
409 |
+
"max": 0.0
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"current": 2649.998,
|
413 |
+
"min": 0.0,
|
414 |
+
"max": 0.0
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"current": 2649.998,
|
418 |
+
"min": 0.0,
|
419 |
+
"max": 0.0
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"current": 2649.998,
|
423 |
+
"min": 0.0,
|
424 |
+
"max": 0.0
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"current": 2649.998,
|
428 |
+
"min": 0.0,
|
429 |
+
"max": 0.0
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"current": 2649.998,
|
433 |
+
"min": 0.0,
|
434 |
+
"max": 0.0
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"current": 2649.998,
|
438 |
+
"min": 0.0,
|
439 |
+
"max": 0.0
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"current": 2649.998,
|
443 |
+
"min": 0.0,
|
444 |
+
"max": 0.0
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"current": 2649.998,
|
448 |
+
"min": 0.0,
|
449 |
+
"max": 0.0
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"current": 2649.998,
|
453 |
+
"min": 0.0,
|
454 |
+
"max": 0.0
|
455 |
+
},
|
456 |
+
{
|
457 |
+
"current": 2649.998,
|
458 |
+
"min": 0.0,
|
459 |
+
"max": 0.0
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"current": 2649.998,
|
463 |
+
"min": 0.0,
|
464 |
+
"max": 0.0
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"current": 2649.998,
|
468 |
+
"min": 0.0,
|
469 |
+
"max": 0.0
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"current": 2649.998,
|
473 |
+
"min": 0.0,
|
474 |
+
"max": 0.0
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"current": 2649.998,
|
478 |
+
"min": 0.0,
|
479 |
+
"max": 0.0
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"current": 2649.998,
|
483 |
+
"min": 0.0,
|
484 |
+
"max": 0.0
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"current": 2649.998,
|
488 |
+
"min": 0.0,
|
489 |
+
"max": 0.0
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"current": 2649.998,
|
493 |
+
"min": 0.0,
|
494 |
+
"max": 0.0
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"current": 2649.998,
|
498 |
+
"min": 0.0,
|
499 |
+
"max": 0.0
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"current": 2649.998,
|
503 |
+
"min": 0.0,
|
504 |
+
"max": 0.0
|
505 |
+
}
|
506 |
+
],
|
507 |
+
"disk": {
|
508 |
+
"/": {
|
509 |
+
"total": 290.7472343444824,
|
510 |
+
"used": 58.41170883178711
|
511 |
+
}
|
512 |
+
},
|
513 |
+
"gpu": "NVIDIA H100 80GB HBM3",
|
514 |
+
"gpu_count": 8,
|
515 |
+
"gpu_devices": [
|
516 |
+
{
|
517 |
+
"name": "NVIDIA H100 80GB HBM3",
|
518 |
+
"memory_total": 85520809984
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"name": "NVIDIA H100 80GB HBM3",
|
522 |
+
"memory_total": 85520809984
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"name": "NVIDIA H100 80GB HBM3",
|
526 |
+
"memory_total": 85520809984
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"name": "NVIDIA H100 80GB HBM3",
|
530 |
+
"memory_total": 85520809984
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"name": "NVIDIA H100 80GB HBM3",
|
534 |
+
"memory_total": 85520809984
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"name": "NVIDIA H100 80GB HBM3",
|
538 |
+
"memory_total": 85520809984
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"name": "NVIDIA H100 80GB HBM3",
|
542 |
+
"memory_total": 85520809984
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"name": "NVIDIA H100 80GB HBM3",
|
546 |
+
"memory_total": 85520809984
|
547 |
+
}
|
548 |
+
],
|
549 |
+
"memory": {
|
550 |
+
"total": 1999.9855461120605
|
551 |
+
}
|
552 |
+
}
|
wandb/run-20240416_172306-uygw9yfk/files/wandb-summary.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"_wandb": {"runtime": 3740}}
|
wandb/run-20240416_172306-uygw9yfk/logs/debug-internal.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
wandb/run-20240416_172306-uygw9yfk/logs/debug.log
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-04-16 17:23:06,340 INFO MainThread:940676 [wandb_setup.py:_flush():76] Current SDK version is 0.16.1
|
2 |
+
2024-04-16 17:23:06,340 INFO MainThread:940676 [wandb_setup.py:_flush():76] Configure stats pid to 940676
|
3 |
+
2024-04-16 17:23:06,340 INFO MainThread:940676 [wandb_setup.py:_flush():76] Loading settings from /admin/home/sanchit/.config/wandb/settings
|
4 |
+
2024-04-16 17:23:06,340 INFO MainThread:940676 [wandb_setup.py:_flush():76] Loading settings from /fsx/sanchit/mistral-debug-4bit/wandb/settings
|
5 |
+
2024-04-16 17:23:06,340 INFO MainThread:940676 [wandb_setup.py:_flush():76] Loading settings from environment variables: {}
|
6 |
+
2024-04-16 17:23:06,341 INFO MainThread:940676 [wandb_setup.py:_flush():76] Applying setup settings: {'_disable_service': False}
|
7 |
+
2024-04-16 17:23:06,341 INFO MainThread:940676 [wandb_setup.py:_flush():76] Inferring run settings from compute environment: {'program_relpath': 'run_distillation.py', 'program_abspath': '/fsx/sanchit/mistral-debug-4bit/run_distillation.py', 'program': '/fsx/sanchit/mistral-debug-4bit/run_distillation.py'}
|
8 |
+
2024-04-16 17:23:06,341 INFO MainThread:940676 [wandb_init.py:_log_setup():524] Logging user logs to /fsx/sanchit/mistral-debug-4bit/wandb/run-20240416_172306-uygw9yfk/logs/debug.log
|
9 |
+
2024-04-16 17:23:06,341 INFO MainThread:940676 [wandb_init.py:_log_setup():525] Logging internal logs to /fsx/sanchit/mistral-debug-4bit/wandb/run-20240416_172306-uygw9yfk/logs/debug-internal.log
|
10 |
+
2024-04-16 17:23:06,341 INFO MainThread:940676 [wandb_init.py:init():564] calling init triggers
|
11 |
+
2024-04-16 17:23:06,341 INFO MainThread:940676 [wandb_init.py:init():571] wandb.init called with sweep_config: {}
|
12 |
+
config: {}
|
13 |
+
2024-04-16 17:23:06,341 INFO MainThread:940676 [wandb_init.py:init():614] starting backend
|
14 |
+
2024-04-16 17:23:06,341 INFO MainThread:940676 [wandb_init.py:init():618] setting up manager
|
15 |
+
2024-04-16 17:23:06,346 INFO MainThread:940676 [backend.py:_multiprocessing_setup():105] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
|
16 |
+
2024-04-16 17:23:06,348 INFO MainThread:940676 [wandb_init.py:init():624] backend started and connected
|
17 |
+
2024-04-16 17:23:06,353 INFO MainThread:940676 [wandb_init.py:init():716] updated telemetry
|
18 |
+
2024-04-16 17:23:06,355 INFO MainThread:940676 [wandb_init.py:init():749] communicating run to backend with 90.0 second timeout
|
19 |
+
2024-04-16 17:23:06,543 INFO MainThread:940676 [wandb_run.py:_on_init():2254] communicating current version
|
20 |
+
2024-04-16 17:23:06,597 INFO MainThread:940676 [wandb_run.py:_on_init():2263] got version response upgrade_message: "wandb version 0.16.6 is available! To upgrade, please run:\n $ pip install wandb --upgrade"
|
21 |
+
|
22 |
+
2024-04-16 17:23:06,597 INFO MainThread:940676 [wandb_init.py:init():800] starting run threads in backend
|
23 |
+
2024-04-16 17:23:10,890 INFO MainThread:940676 [wandb_run.py:_console_start():2233] atexit reg
|
24 |
+
2024-04-16 17:23:10,890 INFO MainThread:940676 [wandb_run.py:_redirect():2088] redirect: wrap_raw
|
25 |
+
2024-04-16 17:23:10,890 INFO MainThread:940676 [wandb_run.py:_redirect():2153] Wrapping output streams.
|
26 |
+
2024-04-16 17:23:10,890 INFO MainThread:940676 [wandb_run.py:_redirect():2178] Redirects installed.
|
27 |
+
2024-04-16 17:23:10,891 INFO MainThread:940676 [wandb_init.py:init():841] run started, returning control to user process
|
28 |
+
2024-04-16 18:25:33,477 WARNING MsgRouterThr:940676 [router.py:message_loop():77] message_loop has been closed
|
wandb/run-20240416_172306-uygw9yfk/run-uygw9yfk.wandb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7b7f3db093dc72789da88e861e5e5ab2a754f2d106b86f4a51a210d3e939e0b
|
3 |
+
size 8362887
|
wandb/run-20240416_205309-xdytsc71/files/conda-environment.yaml
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: venv
|
2 |
+
channels:
|
3 |
+
- pytorch
|
4 |
+
- nvidia
|
5 |
+
- defaults
|
6 |
+
dependencies:
|
7 |
+
- _libgcc_mutex=0.1=main
|
8 |
+
- _openmp_mutex=5.1=1_gnu
|
9 |
+
- blas=1.0=mkl
|
10 |
+
- brotli-python=1.0.9=py311h6a678d5_7
|
11 |
+
- bzip2=1.0.8=h7b6447c_0
|
12 |
+
- ca-certificates=2023.12.12=h06a4308_0
|
13 |
+
- certifi=2023.11.17=py311h06a4308_0
|
14 |
+
- cffi=1.16.0=py311h5eee18b_0
|
15 |
+
- cryptography=41.0.7=py311hdda0065_0
|
16 |
+
- cuda-cudart=12.1.105=0
|
17 |
+
- cuda-cupti=12.1.105=0
|
18 |
+
- cuda-libraries=12.1.0=0
|
19 |
+
- cuda-nvrtc=12.1.105=0
|
20 |
+
- cuda-nvtx=12.1.105=0
|
21 |
+
- cuda-opencl=12.3.101=0
|
22 |
+
- cuda-runtime=12.1.0=0
|
23 |
+
- ffmpeg=4.3=hf484d3e_0
|
24 |
+
- filelock=3.13.1=py311h06a4308_0
|
25 |
+
- freetype=2.12.1=h4a9f257_0
|
26 |
+
- giflib=5.2.1=h5eee18b_3
|
27 |
+
- gmp=6.2.1=h295c915_3
|
28 |
+
- gmpy2=2.1.2=py311hc9b5ff0_0
|
29 |
+
- gnutls=3.6.15=he1e5248_0
|
30 |
+
- intel-openmp=2023.1.0=hdb19cb5_46306
|
31 |
+
- jinja2=3.1.2=py311h06a4308_0
|
32 |
+
- jpeg=9e=h5eee18b_1
|
33 |
+
- lame=3.100=h7b6447c_0
|
34 |
+
- lcms2=2.12=h3be6417_0
|
35 |
+
- ld_impl_linux-64=2.38=h1181459_1
|
36 |
+
- lerc=3.0=h295c915_0
|
37 |
+
- libcublas=12.1.0.26=0
|
38 |
+
- libcufft=11.0.2.4=0
|
39 |
+
- libcufile=1.8.1.2=0
|
40 |
+
- libcurand=10.3.4.101=0
|
41 |
+
- libcusolver=11.4.4.55=0
|
42 |
+
- libcusparse=12.0.2.55=0
|
43 |
+
- libdeflate=1.17=h5eee18b_1
|
44 |
+
- libffi=3.4.4=h6a678d5_0
|
45 |
+
- libgcc-ng=11.2.0=h1234567_1
|
46 |
+
- libgomp=11.2.0=h1234567_1
|
47 |
+
- libiconv=1.16=h7f8727e_2
|
48 |
+
- libidn2=2.3.4=h5eee18b_0
|
49 |
+
- libjpeg-turbo=2.0.0=h9bf148f_0
|
50 |
+
- libnpp=12.0.2.50=0
|
51 |
+
- libnvjitlink=12.1.105=0
|
52 |
+
- libnvjpeg=12.1.1.14=0
|
53 |
+
- libpng=1.6.39=h5eee18b_0
|
54 |
+
- libstdcxx-ng=11.2.0=h1234567_1
|
55 |
+
- libtasn1=4.19.0=h5eee18b_0
|
56 |
+
- libtiff=4.5.1=h6a678d5_0
|
57 |
+
- libunistring=0.9.10=h27cfd23_0
|
58 |
+
- libuuid=1.41.5=h5eee18b_0
|
59 |
+
- libwebp=1.3.2=h11a3e52_0
|
60 |
+
- libwebp-base=1.3.2=h5eee18b_0
|
61 |
+
- llvm-openmp=14.0.6=h9e868ea_0
|
62 |
+
- lz4-c=1.9.4=h6a678d5_0
|
63 |
+
- markupsafe=2.1.1=py311h5eee18b_0
|
64 |
+
- mkl=2023.1.0=h213fc3f_46344
|
65 |
+
- mkl-service=2.4.0=py311h5eee18b_1
|
66 |
+
- mkl_fft=1.3.8=py311h5eee18b_0
|
67 |
+
- mkl_random=1.2.4=py311hdb19cb5_0
|
68 |
+
- mpc=1.1.0=h10f8cd9_1
|
69 |
+
- mpfr=4.0.2=hb69a4c5_1
|
70 |
+
- mpmath=1.3.0=py311h06a4308_0
|
71 |
+
- ncurses=6.4=h6a678d5_0
|
72 |
+
- nettle=3.7.3=hbbd107a_1
|
73 |
+
- networkx=3.1=py311h06a4308_0
|
74 |
+
- numpy=1.26.2=py311h08b1b3b_0
|
75 |
+
- numpy-base=1.26.2=py311hf175353_0
|
76 |
+
- openh264=2.1.1=h4ff587b_0
|
77 |
+
- openjpeg=2.4.0=h3ad879b_0
|
78 |
+
- openssl=3.0.12=h7f8727e_0
|
79 |
+
- pycparser=2.21=pyhd3eb1b0_0
|
80 |
+
- pyopenssl=23.2.0=py311h06a4308_0
|
81 |
+
- pysocks=1.7.1=py311h06a4308_0
|
82 |
+
- python=3.11.5=h955ad1f_0
|
83 |
+
- pytorch-cuda=12.1=ha16c6d3_5
|
84 |
+
- pytorch-mutex=1.0=cuda
|
85 |
+
- pyyaml=6.0.1=py311h5eee18b_0
|
86 |
+
- readline=8.2=h5eee18b_0
|
87 |
+
- requests=2.31.0=py311h06a4308_0
|
88 |
+
- setuptools=68.2.2=py311h06a4308_0
|
89 |
+
- sqlite=3.41.2=h5eee18b_0
|
90 |
+
- sympy=1.12=py311h06a4308_0
|
91 |
+
- tbb=2021.8.0=hdb19cb5_0
|
92 |
+
- tk=8.6.12=h1ccaba5_0
|
93 |
+
- wheel=0.41.2=py311h06a4308_0
|
94 |
+
- xz=5.4.5=h5eee18b_0
|
95 |
+
- yaml=0.2.5=h7b6447c_0
|
96 |
+
- zlib=1.2.13=h5eee18b_0
|
97 |
+
- zstd=1.5.5=hc292b87_0
|
98 |
+
- pip:
|
99 |
+
- absl-py==2.0.0
|
100 |
+
- accelerate==0.29.2
|
101 |
+
- aiohttp==3.9.1
|
102 |
+
- aiosignal==1.3.1
|
103 |
+
- annotated-types==0.6.0
|
104 |
+
- anyio==4.2.0
|
105 |
+
- appdirs==1.4.4
|
106 |
+
- argon2-cffi==23.1.0
|
107 |
+
- argon2-cffi-bindings==21.2.0
|
108 |
+
- arrow==1.3.0
|
109 |
+
- asttokens==2.4.1
|
110 |
+
- astunparse==1.6.3
|
111 |
+
- async-lru==2.0.4
|
112 |
+
- attrs==23.1.0
|
113 |
+
- audioread==3.0.1
|
114 |
+
- babel==2.14.0
|
115 |
+
- beautifulsoup4==4.12.3
|
116 |
+
- bitsandbytes==0.43.1
|
117 |
+
- bleach==6.1.0
|
118 |
+
- cachetools==5.3.2
|
119 |
+
- chardet==5.2.0
|
120 |
+
- charset-normalizer==3.3.2
|
121 |
+
- click==8.1.7
|
122 |
+
- comm==0.2.1
|
123 |
+
- datasets==2.18.1.dev0
|
124 |
+
- debugpy==1.8.1
|
125 |
+
- decorator==5.1.1
|
126 |
+
- deepspeed==0.12.2
|
127 |
+
- defusedxml==0.7.1
|
128 |
+
- dill==0.3.7
|
129 |
+
- docker-pycreds==0.4.0
|
130 |
+
- docstring-parser==0.15
|
131 |
+
- einops==0.7.0
|
132 |
+
- evaluate==0.4.0
|
133 |
+
- executing==2.0.1
|
134 |
+
- fastjsonschema==2.19.1
|
135 |
+
- flatbuffers==23.5.26
|
136 |
+
- fqdn==1.5.1
|
137 |
+
- frozenlist==1.4.1
|
138 |
+
- fsspec==2023.10.0
|
139 |
+
- gast==0.5.4
|
140 |
+
- gitdb==4.0.11
|
141 |
+
- gitpython==3.1.40
|
142 |
+
- google-auth==2.26.1
|
143 |
+
- google-auth-oauthlib==1.2.0
|
144 |
+
- google-pasta==0.2.0
|
145 |
+
- grpcio==1.60.0
|
146 |
+
- h11==0.14.0
|
147 |
+
- h5py==3.10.0
|
148 |
+
- hf-transfer==0.1.5
|
149 |
+
- hjson==3.1.0
|
150 |
+
- httpcore==1.0.2
|
151 |
+
- httpx==0.26.0
|
152 |
+
- huggingface-hub==0.22.2
|
153 |
+
- idna==3.6
|
154 |
+
- ipdb==0.13.13
|
155 |
+
- ipykernel==6.29.2
|
156 |
+
- ipython==8.21.0
|
157 |
+
- isoduration==20.11.0
|
158 |
+
- jedi==0.19.1
|
159 |
+
- jiwer==3.0.3
|
160 |
+
- joblib==1.3.2
|
161 |
+
- json5==0.9.14
|
162 |
+
- jsonpointer==2.4
|
163 |
+
- jsonschema==4.21.1
|
164 |
+
- jsonschema-specifications==2023.12.1
|
165 |
+
- jupyter-client==8.6.0
|
166 |
+
- jupyter-core==5.7.1
|
167 |
+
- jupyter-events==0.9.0
|
168 |
+
- jupyter-lsp==2.2.2
|
169 |
+
- jupyter-server==2.12.5
|
170 |
+
- jupyter-server-terminals==0.5.2
|
171 |
+
- jupyterlab==4.1.1
|
172 |
+
- jupyterlab-pygments==0.3.0
|
173 |
+
- jupyterlab-server==2.25.2
|
174 |
+
- keras==2.15.0
|
175 |
+
- lazy-loader==0.3
|
176 |
+
- libclang==16.0.6
|
177 |
+
- librosa==0.10.1
|
178 |
+
- llvmlite==0.41.1
|
179 |
+
- markdown==3.5.1
|
180 |
+
- markdown-it-py==3.0.0
|
181 |
+
- matplotlib-inline==0.1.6
|
182 |
+
- mdurl==0.1.2
|
183 |
+
- mistune==3.0.2
|
184 |
+
- ml-dtypes==0.2.0
|
185 |
+
- msgpack==1.0.7
|
186 |
+
- multidict==6.0.4
|
187 |
+
- multiprocess==0.70.15
|
188 |
+
- nbclient==0.9.0
|
189 |
+
- nbconvert==7.16.0
|
190 |
+
- nbformat==5.9.2
|
191 |
+
- nest-asyncio==1.6.0
|
192 |
+
- ninja==1.11.1.1
|
193 |
+
- nltk==3.8.1
|
194 |
+
- notebook-shim==0.2.3
|
195 |
+
- numba==0.58.1
|
196 |
+
- nvidia-cublas-cu12==12.1.3.1
|
197 |
+
- nvidia-cuda-cupti-cu12==12.1.105
|
198 |
+
- nvidia-cuda-nvrtc-cu12==12.1.105
|
199 |
+
- nvidia-cuda-runtime-cu12==12.1.105
|
200 |
+
- nvidia-cudnn-cu12==8.9.2.26
|
201 |
+
- nvidia-cufft-cu12==11.0.2.54
|
202 |
+
- nvidia-curand-cu12==10.3.2.106
|
203 |
+
- nvidia-cusolver-cu12==11.4.5.107
|
204 |
+
- nvidia-cusparse-cu12==12.1.0.106
|
205 |
+
- nvidia-nccl-cu12==2.20.5
|
206 |
+
- nvidia-nvjitlink-cu12==12.3.101
|
207 |
+
- nvidia-nvtx-cu12==12.1.105
|
208 |
+
- oauthlib==3.2.2
|
209 |
+
- opt-einsum==3.3.0
|
210 |
+
- overrides==7.7.0
|
211 |
+
- packaging==23.2
|
212 |
+
- pandas==2.1.4
|
213 |
+
- pandocfilters==1.5.1
|
214 |
+
- parso==0.8.3
|
215 |
+
- peft==0.7.1
|
216 |
+
- pexpect==4.9.0
|
217 |
+
- pillow==10.2.0
|
218 |
+
- pip==24.0
|
219 |
+
- platformdirs==4.1.0
|
220 |
+
- pooch==1.8.0
|
221 |
+
- prometheus-client==0.19.0
|
222 |
+
- prompt-toolkit==3.0.43
|
223 |
+
- protobuf==3.20.2
|
224 |
+
- psutil==5.9.7
|
225 |
+
- ptyprocess==0.7.0
|
226 |
+
- pure-eval==0.2.2
|
227 |
+
- py-cpuinfo==9.0.0
|
228 |
+
- pyarrow==14.0.2
|
229 |
+
- pyarrow-hotfix==0.6
|
230 |
+
- pyasn1==0.5.1
|
231 |
+
- pyasn1-modules==0.3.0
|
232 |
+
- pydantic==2.6.0
|
233 |
+
- pydantic-core==2.16.1
|
234 |
+
- pygments==2.17.2
|
235 |
+
- pynvml==11.5.0
|
236 |
+
- python-dateutil==2.8.2
|
237 |
+
- python-json-logger==2.0.7
|
238 |
+
- pytorch-triton==3.0.0+989adb9a29
|
239 |
+
- pytz==2023.3.post1
|
240 |
+
- pyzmq==25.1.2
|
241 |
+
- rapidfuzz==3.6.1
|
242 |
+
- referencing==0.33.0
|
243 |
+
- regex==2023.12.25
|
244 |
+
- requests-oauthlib==1.3.1
|
245 |
+
- responses==0.18.0
|
246 |
+
- rfc3339-validator==0.1.4
|
247 |
+
- rfc3986-validator==0.1.1
|
248 |
+
- rich==13.7.0
|
249 |
+
- rpds-py==0.17.1
|
250 |
+
- rsa==4.9
|
251 |
+
- safetensors==0.4.1
|
252 |
+
- scikit-learn==1.3.2
|
253 |
+
- scipy==1.11.4
|
254 |
+
- send2trash==1.8.2
|
255 |
+
- sentencepiece==0.1.99
|
256 |
+
- sentry-sdk==1.39.1
|
257 |
+
- setproctitle==1.3.3
|
258 |
+
- shtab==1.6.5
|
259 |
+
- six==1.16.0
|
260 |
+
- smmap==5.0.1
|
261 |
+
- sniffio==1.3.0
|
262 |
+
- soundfile==0.12.1
|
263 |
+
- soupsieve==2.5
|
264 |
+
- soxr==0.3.7
|
265 |
+
- stack-data==0.6.3
|
266 |
+
- tensorboard==2.15.1
|
267 |
+
- tensorboard-data-server==0.7.2
|
268 |
+
- tensorflow-cpu==2.15.0.post1
|
269 |
+
- tensorflow-estimator==2.15.0
|
270 |
+
- tensorflow-io-gcs-filesystem==0.35.0
|
271 |
+
- termcolor==2.4.0
|
272 |
+
- terminado==0.18.0
|
273 |
+
- threadpoolctl==3.2.0
|
274 |
+
- tinycss2==1.2.1
|
275 |
+
- tokenizers==0.15.0
|
276 |
+
- torch==2.4.0.dev20240323+cu121
|
277 |
+
- torchaudio==2.2.0.dev20240323+cu121
|
278 |
+
- torchvision==0.19.0.dev20240323+cu121
|
279 |
+
- tornado==6.4
|
280 |
+
- tqdm==4.66.1
|
281 |
+
- traitlets==5.14.1
|
282 |
+
- transformers==4.39.0.dev0
|
283 |
+
- triton==2.2.0
|
284 |
+
- trl==0.7.7
|
285 |
+
- types-python-dateutil==2.8.19.20240106
|
286 |
+
- typing-extensions==4.10.0
|
287 |
+
- tyro==0.7.0
|
288 |
+
- tzdata==2023.3
|
289 |
+
- uri-template==1.3.0
|
290 |
+
- urllib3==2.1.0
|
291 |
+
- wandb==0.16.1
|
292 |
+
- wcwidth==0.2.13
|
293 |
+
- webcolors==1.13
|
294 |
+
- webencodings==0.5.1
|
295 |
+
- websocket-client==1.7.0
|
296 |
+
- werkzeug==3.0.1
|
297 |
+
- wrapt==1.14.1
|
298 |
+
- xxhash==3.4.1
|
299 |
+
- yarl==1.9.4
|
300 |
+
prefix: /fsx/sanchit/miniconda3/envs/venv
|
wandb/run-20240416_205309-xdytsc71/files/config.yaml
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wandb_version: 1
|
2 |
+
|
3 |
+
_wandb:
|
4 |
+
desc: null
|
5 |
+
value:
|
6 |
+
python_version: 3.11.5
|
7 |
+
cli_version: 0.16.1
|
8 |
+
framework: huggingface
|
9 |
+
huggingface_version: 4.40.0.dev0
|
10 |
+
is_jupyter_run: false
|
11 |
+
is_kaggle_kernel: false
|
12 |
+
start_time: 1713300789.254433
|
13 |
+
t:
|
14 |
+
1:
|
15 |
+
- 1
|
16 |
+
- 11
|
17 |
+
- 49
|
18 |
+
- 51
|
19 |
+
- 55
|
20 |
+
- 71
|
21 |
+
- 98
|
22 |
+
2:
|
23 |
+
- 1
|
24 |
+
- 2
|
25 |
+
- 3
|
26 |
+
- 11
|
27 |
+
- 49
|
28 |
+
- 51
|
29 |
+
- 55
|
30 |
+
- 71
|
31 |
+
- 98
|
32 |
+
3:
|
33 |
+
- 2
|
34 |
+
- 23
|
35 |
+
4: 3.11.5
|
36 |
+
5: 0.16.1
|
37 |
+
6: 4.40.0.dev0
|
38 |
+
8:
|
39 |
+
- 5
|
40 |
+
13: linux-x86_64
|
wandb/run-20240416_205309-xdytsc71/files/output.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
wandb/run-20240416_205309-xdytsc71/files/requirements.txt
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==2.0.0
|
2 |
+
accelerate==0.29.2
|
3 |
+
aiohttp==3.9.1
|
4 |
+
aiosignal==1.3.1
|
5 |
+
annotated-types==0.6.0
|
6 |
+
anyio==4.2.0
|
7 |
+
appdirs==1.4.4
|
8 |
+
argon2-cffi-bindings==21.2.0
|
9 |
+
argon2-cffi==23.1.0
|
10 |
+
arrow==1.3.0
|
11 |
+
asttokens==2.4.1
|
12 |
+
astunparse==1.6.3
|
13 |
+
async-lru==2.0.4
|
14 |
+
attrs==23.1.0
|
15 |
+
audioread==3.0.1
|
16 |
+
babel==2.14.0
|
17 |
+
beautifulsoup4==4.12.3
|
18 |
+
bitsandbytes==0.43.1
|
19 |
+
bleach==6.1.0
|
20 |
+
brotli==1.0.9
|
21 |
+
cachetools==5.3.2
|
22 |
+
certifi==2023.11.17
|
23 |
+
cffi==1.16.0
|
24 |
+
chardet==5.2.0
|
25 |
+
charset-normalizer==2.0.4
|
26 |
+
click==8.1.7
|
27 |
+
comm==0.2.1
|
28 |
+
cryptography==41.0.7
|
29 |
+
datasets==2.18.1.dev0
|
30 |
+
debugpy==1.8.1
|
31 |
+
decorator==5.1.1
|
32 |
+
deepspeed==0.12.2
|
33 |
+
defusedxml==0.7.1
|
34 |
+
dill==0.3.7
|
35 |
+
docker-pycreds==0.4.0
|
36 |
+
docstring-parser==0.15
|
37 |
+
einops==0.7.0
|
38 |
+
evaluate==0.4.0
|
39 |
+
executing==2.0.1
|
40 |
+
fastjsonschema==2.19.1
|
41 |
+
filelock==3.13.1
|
42 |
+
flatbuffers==23.5.26
|
43 |
+
fqdn==1.5.1
|
44 |
+
frozenlist==1.4.1
|
45 |
+
fsspec==2023.10.0
|
46 |
+
gast==0.5.4
|
47 |
+
gitdb==4.0.11
|
48 |
+
gitpython==3.1.40
|
49 |
+
gmpy2==2.1.2
|
50 |
+
google-auth-oauthlib==1.2.0
|
51 |
+
google-auth==2.26.1
|
52 |
+
google-pasta==0.2.0
|
53 |
+
grpcio==1.60.0
|
54 |
+
h11==0.14.0
|
55 |
+
h5py==3.10.0
|
56 |
+
hf-transfer==0.1.5
|
57 |
+
hjson==3.1.0
|
58 |
+
httpcore==1.0.2
|
59 |
+
httpx==0.26.0
|
60 |
+
huggingface-hub==0.22.2
|
61 |
+
idna==3.4
|
62 |
+
ipdb==0.13.13
|
63 |
+
ipykernel==6.29.2
|
64 |
+
ipython==8.21.0
|
65 |
+
isoduration==20.11.0
|
66 |
+
jedi==0.19.1
|
67 |
+
jinja2==3.1.2
|
68 |
+
jiwer==3.0.3
|
69 |
+
joblib==1.3.2
|
70 |
+
json5==0.9.14
|
71 |
+
jsonpointer==2.4
|
72 |
+
jsonschema-specifications==2023.12.1
|
73 |
+
jsonschema==4.21.1
|
74 |
+
jupyter-client==8.6.0
|
75 |
+
jupyter-core==5.7.1
|
76 |
+
jupyter-events==0.9.0
|
77 |
+
jupyter-lsp==2.2.2
|
78 |
+
jupyter-server-terminals==0.5.2
|
79 |
+
jupyter-server==2.12.5
|
80 |
+
jupyterlab-pygments==0.3.0
|
81 |
+
jupyterlab-server==2.25.2
|
82 |
+
jupyterlab==4.1.1
|
83 |
+
keras==2.15.0
|
84 |
+
lazy-loader==0.3
|
85 |
+
libclang==16.0.6
|
86 |
+
librosa==0.10.1
|
87 |
+
llvmlite==0.41.1
|
88 |
+
markdown-it-py==3.0.0
|
89 |
+
markdown==3.5.1
|
90 |
+
markupsafe==2.1.1
|
91 |
+
matplotlib-inline==0.1.6
|
92 |
+
mdurl==0.1.2
|
93 |
+
mistune==3.0.2
|
94 |
+
mkl-fft==1.3.8
|
95 |
+
mkl-random==1.2.4
|
96 |
+
mkl-service==2.4.0
|
97 |
+
ml-dtypes==0.2.0
|
98 |
+
mpmath==1.3.0
|
99 |
+
msgpack==1.0.7
|
100 |
+
multidict==6.0.4
|
101 |
+
multiprocess==0.70.15
|
102 |
+
nbclient==0.9.0
|
103 |
+
nbconvert==7.16.0
|
104 |
+
nbformat==5.9.2
|
105 |
+
nest-asyncio==1.6.0
|
106 |
+
networkx==3.1
|
107 |
+
ninja==1.11.1.1
|
108 |
+
nltk==3.8.1
|
109 |
+
notebook-shim==0.2.3
|
110 |
+
numba==0.58.1
|
111 |
+
numpy==1.26.2
|
112 |
+
nvidia-cublas-cu12==12.1.3.1
|
113 |
+
nvidia-cuda-cupti-cu12==12.1.105
|
114 |
+
nvidia-cuda-nvrtc-cu12==12.1.105
|
115 |
+
nvidia-cuda-runtime-cu12==12.1.105
|
116 |
+
nvidia-cudnn-cu12==8.9.2.26
|
117 |
+
nvidia-cufft-cu12==11.0.2.54
|
118 |
+
nvidia-curand-cu12==10.3.2.106
|
119 |
+
nvidia-cusolver-cu12==11.4.5.107
|
120 |
+
nvidia-cusparse-cu12==12.1.0.106
|
121 |
+
nvidia-nccl-cu12==2.20.5
|
122 |
+
nvidia-nvjitlink-cu12==12.3.101
|
123 |
+
nvidia-nvtx-cu12==12.1.105
|
124 |
+
oauthlib==3.2.2
|
125 |
+
opt-einsum==3.3.0
|
126 |
+
overrides==7.7.0
|
127 |
+
packaging==23.2
|
128 |
+
pandas==2.1.4
|
129 |
+
pandocfilters==1.5.1
|
130 |
+
parso==0.8.3
|
131 |
+
peft==0.7.1
|
132 |
+
pexpect==4.9.0
|
133 |
+
pillow==10.2.0
|
134 |
+
pip==24.0
|
135 |
+
platformdirs==4.1.0
|
136 |
+
pooch==1.8.0
|
137 |
+
prometheus-client==0.19.0
|
138 |
+
prompt-toolkit==3.0.43
|
139 |
+
protobuf==3.20.2
|
140 |
+
psutil==5.9.7
|
141 |
+
ptyprocess==0.7.0
|
142 |
+
pure-eval==0.2.2
|
143 |
+
py-cpuinfo==9.0.0
|
144 |
+
pyarrow-hotfix==0.6
|
145 |
+
pyarrow==14.0.2
|
146 |
+
pyasn1-modules==0.3.0
|
147 |
+
pyasn1==0.5.1
|
148 |
+
pycparser==2.21
|
149 |
+
pydantic-core==2.16.1
|
150 |
+
pydantic==2.6.0
|
151 |
+
pygments==2.17.2
|
152 |
+
pynvml==11.5.0
|
153 |
+
pyopenssl==23.2.0
|
154 |
+
pysocks==1.7.1
|
155 |
+
python-dateutil==2.8.2
|
156 |
+
python-json-logger==2.0.7
|
157 |
+
pytorch-triton==3.0.0+989adb9a29
|
158 |
+
pytz==2023.3.post1
|
159 |
+
pyyaml==6.0.1
|
160 |
+
pyzmq==25.1.2
|
161 |
+
rapidfuzz==3.6.1
|
162 |
+
referencing==0.33.0
|
163 |
+
regex==2023.12.25
|
164 |
+
requests-oauthlib==1.3.1
|
165 |
+
requests==2.31.0
|
166 |
+
responses==0.18.0
|
167 |
+
rfc3339-validator==0.1.4
|
168 |
+
rfc3986-validator==0.1.1
|
169 |
+
rich==13.7.0
|
170 |
+
rpds-py==0.17.1
|
171 |
+
rsa==4.9
|
172 |
+
safetensors==0.4.1
|
173 |
+
scikit-learn==1.3.2
|
174 |
+
scipy==1.11.4
|
175 |
+
send2trash==1.8.2
|
176 |
+
sentencepiece==0.1.99
|
177 |
+
sentry-sdk==1.39.1
|
178 |
+
setproctitle==1.3.3
|
179 |
+
setuptools==68.2.2
|
180 |
+
shtab==1.6.5
|
181 |
+
six==1.16.0
|
182 |
+
smmap==5.0.1
|
183 |
+
sniffio==1.3.0
|
184 |
+
soundfile==0.12.1
|
185 |
+
soupsieve==2.5
|
186 |
+
soxr==0.3.7
|
187 |
+
stack-data==0.6.3
|
188 |
+
sympy==1.12
|
189 |
+
tensorboard-data-server==0.7.2
|
190 |
+
tensorboard==2.15.1
|
191 |
+
tensorflow-cpu==2.15.0.post1
|
192 |
+
tensorflow-estimator==2.15.0
|
193 |
+
tensorflow-io-gcs-filesystem==0.35.0
|
194 |
+
termcolor==2.4.0
|
195 |
+
terminado==0.18.0
|
196 |
+
threadpoolctl==3.2.0
|
197 |
+
tinycss2==1.2.1
|
198 |
+
tokenizers==0.15.0
|
199 |
+
torch==2.4.0.dev20240323+cu121
|
200 |
+
torchaudio==2.2.0.dev20240323+cu121
|
201 |
+
torchvision==0.19.0.dev20240323+cu121
|
202 |
+
tornado==6.4
|
203 |
+
tqdm==4.66.1
|
204 |
+
traitlets==5.14.1
|
205 |
+
transformers==4.39.0.dev0
|
206 |
+
triton==2.2.0
|
207 |
+
trl==0.7.7
|
208 |
+
types-python-dateutil==2.8.19.20240106
|
209 |
+
typing-extensions==4.10.0
|
210 |
+
tyro==0.7.0
|
211 |
+
tzdata==2023.3
|
212 |
+
uri-template==1.3.0
|
213 |
+
urllib3==1.26.18
|
214 |
+
wandb==0.16.1
|
215 |
+
wcwidth==0.2.13
|
216 |
+
webcolors==1.13
|
217 |
+
webencodings==0.5.1
|
218 |
+
websocket-client==1.7.0
|
219 |
+
werkzeug==3.0.1
|
220 |
+
wheel==0.41.2
|
221 |
+
wrapt==1.14.1
|
222 |
+
xxhash==3.4.1
|
223 |
+
yarl==1.9.4
|
wandb/run-20240416_205309-xdytsc71/files/wandb-metadata.json
ADDED
@@ -0,0 +1,552 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"os": "Linux-5.15.0-1048-aws-x86_64-with-glibc2.31",
|
3 |
+
"python": "3.11.5",
|
4 |
+
"heartbeatAt": "2024-04-16T20:53:09.639270",
|
5 |
+
"startedAt": "2024-04-16T20:53:09.231836",
|
6 |
+
"docker": null,
|
7 |
+
"cuda": null,
|
8 |
+
"args": [
|
9 |
+
"config_mistral.yaml"
|
10 |
+
],
|
11 |
+
"state": "running",
|
12 |
+
"program": "/fsx/sanchit/mistral-debug-4bit/run_distillation.py",
|
13 |
+
"codePathLocal": "run_distillation.py",
|
14 |
+
"codePath": "run_distillation.py",
|
15 |
+
"host": "ip-26-0-164-187",
|
16 |
+
"username": "sanchit",
|
17 |
+
"executable": "/fsx/sanchit/miniconda3/envs/venv/bin/python",
|
18 |
+
"cpu_count": 96,
|
19 |
+
"cpu_count_logical": 96,
|
20 |
+
"cpu_freq": {
|
21 |
+
"current": 2659.3121145833315,
|
22 |
+
"min": 0.0,
|
23 |
+
"max": 0.0
|
24 |
+
},
|
25 |
+
"cpu_freq_per_core": [
|
26 |
+
{
|
27 |
+
"current": 2649.998,
|
28 |
+
"min": 0.0,
|
29 |
+
"max": 0.0
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"current": 2649.998,
|
33 |
+
"min": 0.0,
|
34 |
+
"max": 0.0
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"current": 2649.998,
|
38 |
+
"min": 0.0,
|
39 |
+
"max": 0.0
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"current": 2649.998,
|
43 |
+
"min": 0.0,
|
44 |
+
"max": 0.0
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"current": 2649.998,
|
48 |
+
"min": 0.0,
|
49 |
+
"max": 0.0
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"current": 2649.998,
|
53 |
+
"min": 0.0,
|
54 |
+
"max": 0.0
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"current": 2649.998,
|
58 |
+
"min": 0.0,
|
59 |
+
"max": 0.0
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"current": 2649.998,
|
63 |
+
"min": 0.0,
|
64 |
+
"max": 0.0
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"current": 2649.998,
|
68 |
+
"min": 0.0,
|
69 |
+
"max": 0.0
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"current": 2649.998,
|
73 |
+
"min": 0.0,
|
74 |
+
"max": 0.0
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"current": 3544.153,
|
78 |
+
"min": 0.0,
|
79 |
+
"max": 0.0
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"current": 2649.998,
|
83 |
+
"min": 0.0,
|
84 |
+
"max": 0.0
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"current": 2649.998,
|
88 |
+
"min": 0.0,
|
89 |
+
"max": 0.0
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"current": 2649.998,
|
93 |
+
"min": 0.0,
|
94 |
+
"max": 0.0
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"current": 2649.998,
|
98 |
+
"min": 0.0,
|
99 |
+
"max": 0.0
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"current": 2649.998,
|
103 |
+
"min": 0.0,
|
104 |
+
"max": 0.0
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"current": 2649.998,
|
108 |
+
"min": 0.0,
|
109 |
+
"max": 0.0
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"current": 2649.998,
|
113 |
+
"min": 0.0,
|
114 |
+
"max": 0.0
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"current": 2649.998,
|
118 |
+
"min": 0.0,
|
119 |
+
"max": 0.0
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"current": 2649.998,
|
123 |
+
"min": 0.0,
|
124 |
+
"max": 0.0
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"current": 2649.998,
|
128 |
+
"min": 0.0,
|
129 |
+
"max": 0.0
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"current": 2649.998,
|
133 |
+
"min": 0.0,
|
134 |
+
"max": 0.0
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"current": 2649.998,
|
138 |
+
"min": 0.0,
|
139 |
+
"max": 0.0
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"current": 2649.998,
|
143 |
+
"min": 0.0,
|
144 |
+
"max": 0.0
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"current": 2649.998,
|
148 |
+
"min": 0.0,
|
149 |
+
"max": 0.0
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"current": 2649.998,
|
153 |
+
"min": 0.0,
|
154 |
+
"max": 0.0
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"current": 2649.998,
|
158 |
+
"min": 0.0,
|
159 |
+
"max": 0.0
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"current": 2649.998,
|
163 |
+
"min": 0.0,
|
164 |
+
"max": 0.0
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"current": 2649.998,
|
168 |
+
"min": 0.0,
|
169 |
+
"max": 0.0
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"current": 2649.998,
|
173 |
+
"min": 0.0,
|
174 |
+
"max": 0.0
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"current": 2649.998,
|
178 |
+
"min": 0.0,
|
179 |
+
"max": 0.0
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"current": 2649.998,
|
183 |
+
"min": 0.0,
|
184 |
+
"max": 0.0
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"current": 2649.998,
|
188 |
+
"min": 0.0,
|
189 |
+
"max": 0.0
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"current": 2649.998,
|
193 |
+
"min": 0.0,
|
194 |
+
"max": 0.0
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"current": 2649.998,
|
198 |
+
"min": 0.0,
|
199 |
+
"max": 0.0
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"current": 2649.998,
|
203 |
+
"min": 0.0,
|
204 |
+
"max": 0.0
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"current": 2649.998,
|
208 |
+
"min": 0.0,
|
209 |
+
"max": 0.0
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"current": 2649.998,
|
213 |
+
"min": 0.0,
|
214 |
+
"max": 0.0
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"current": 2649.998,
|
218 |
+
"min": 0.0,
|
219 |
+
"max": 0.0
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"current": 2649.998,
|
223 |
+
"min": 0.0,
|
224 |
+
"max": 0.0
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"current": 2649.998,
|
228 |
+
"min": 0.0,
|
229 |
+
"max": 0.0
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"current": 2649.998,
|
233 |
+
"min": 0.0,
|
234 |
+
"max": 0.0
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"current": 2649.998,
|
238 |
+
"min": 0.0,
|
239 |
+
"max": 0.0
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"current": 2649.998,
|
243 |
+
"min": 0.0,
|
244 |
+
"max": 0.0
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"current": 2649.998,
|
248 |
+
"min": 0.0,
|
249 |
+
"max": 0.0
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"current": 2649.998,
|
253 |
+
"min": 0.0,
|
254 |
+
"max": 0.0
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"current": 2649.998,
|
258 |
+
"min": 0.0,
|
259 |
+
"max": 0.0
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"current": 2649.998,
|
263 |
+
"min": 0.0,
|
264 |
+
"max": 0.0
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"current": 2649.998,
|
268 |
+
"min": 0.0,
|
269 |
+
"max": 0.0
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"current": 2649.998,
|
273 |
+
"min": 0.0,
|
274 |
+
"max": 0.0
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"current": 2649.998,
|
278 |
+
"min": 0.0,
|
279 |
+
"max": 0.0
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"current": 2649.998,
|
283 |
+
"min": 0.0,
|
284 |
+
"max": 0.0
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"current": 2649.998,
|
288 |
+
"min": 0.0,
|
289 |
+
"max": 0.0
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"current": 2649.998,
|
293 |
+
"min": 0.0,
|
294 |
+
"max": 0.0
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"current": 2649.998,
|
298 |
+
"min": 0.0,
|
299 |
+
"max": 0.0
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"current": 2649.998,
|
303 |
+
"min": 0.0,
|
304 |
+
"max": 0.0
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"current": 2649.998,
|
308 |
+
"min": 0.0,
|
309 |
+
"max": 0.0
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"current": 2649.998,
|
313 |
+
"min": 0.0,
|
314 |
+
"max": 0.0
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"current": 2649.998,
|
318 |
+
"min": 0.0,
|
319 |
+
"max": 0.0
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"current": 2649.998,
|
323 |
+
"min": 0.0,
|
324 |
+
"max": 0.0
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"current": 2649.998,
|
328 |
+
"min": 0.0,
|
329 |
+
"max": 0.0
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"current": 2649.998,
|
333 |
+
"min": 0.0,
|
334 |
+
"max": 0.0
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"current": 2649.998,
|
338 |
+
"min": 0.0,
|
339 |
+
"max": 0.0
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"current": 2649.998,
|
343 |
+
"min": 0.0,
|
344 |
+
"max": 0.0
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"current": 2649.998,
|
348 |
+
"min": 0.0,
|
349 |
+
"max": 0.0
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"current": 2649.998,
|
353 |
+
"min": 0.0,
|
354 |
+
"max": 0.0
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"current": 2649.998,
|
358 |
+
"min": 0.0,
|
359 |
+
"max": 0.0
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"current": 2649.998,
|
363 |
+
"min": 0.0,
|
364 |
+
"max": 0.0
|
365 |
+
},
|
366 |
+
{
|
367 |
+
"current": 2649.998,
|
368 |
+
"min": 0.0,
|
369 |
+
"max": 0.0
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"current": 2649.998,
|
373 |
+
"min": 0.0,
|
374 |
+
"max": 0.0
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"current": 2649.998,
|
378 |
+
"min": 0.0,
|
379 |
+
"max": 0.0
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"current": 2649.998,
|
383 |
+
"min": 0.0,
|
384 |
+
"max": 0.0
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"current": 2649.998,
|
388 |
+
"min": 0.0,
|
389 |
+
"max": 0.0
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"current": 2649.998,
|
393 |
+
"min": 0.0,
|
394 |
+
"max": 0.0
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"current": 2649.998,
|
398 |
+
"min": 0.0,
|
399 |
+
"max": 0.0
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"current": 2649.998,
|
403 |
+
"min": 0.0,
|
404 |
+
"max": 0.0
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"current": 2649.998,
|
408 |
+
"min": 0.0,
|
409 |
+
"max": 0.0
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"current": 2649.998,
|
413 |
+
"min": 0.0,
|
414 |
+
"max": 0.0
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"current": 2649.998,
|
418 |
+
"min": 0.0,
|
419 |
+
"max": 0.0
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"current": 2649.998,
|
423 |
+
"min": 0.0,
|
424 |
+
"max": 0.0
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"current": 2649.998,
|
428 |
+
"min": 0.0,
|
429 |
+
"max": 0.0
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"current": 2649.998,
|
433 |
+
"min": 0.0,
|
434 |
+
"max": 0.0
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"current": 2649.998,
|
438 |
+
"min": 0.0,
|
439 |
+
"max": 0.0
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"current": 2649.998,
|
443 |
+
"min": 0.0,
|
444 |
+
"max": 0.0
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"current": 2649.998,
|
448 |
+
"min": 0.0,
|
449 |
+
"max": 0.0
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"current": 2649.998,
|
453 |
+
"min": 0.0,
|
454 |
+
"max": 0.0
|
455 |
+
},
|
456 |
+
{
|
457 |
+
"current": 2649.998,
|
458 |
+
"min": 0.0,
|
459 |
+
"max": 0.0
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"current": 2649.998,
|
463 |
+
"min": 0.0,
|
464 |
+
"max": 0.0
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"current": 2649.998,
|
468 |
+
"min": 0.0,
|
469 |
+
"max": 0.0
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"current": 2649.998,
|
473 |
+
"min": 0.0,
|
474 |
+
"max": 0.0
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"current": 2649.998,
|
478 |
+
"min": 0.0,
|
479 |
+
"max": 0.0
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"current": 2649.998,
|
483 |
+
"min": 0.0,
|
484 |
+
"max": 0.0
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"current": 2649.998,
|
488 |
+
"min": 0.0,
|
489 |
+
"max": 0.0
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"current": 2649.998,
|
493 |
+
"min": 0.0,
|
494 |
+
"max": 0.0
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"current": 2649.998,
|
498 |
+
"min": 0.0,
|
499 |
+
"max": 0.0
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"current": 2649.998,
|
503 |
+
"min": 0.0,
|
504 |
+
"max": 0.0
|
505 |
+
}
|
506 |
+
],
|
507 |
+
"disk": {
|
508 |
+
"/": {
|
509 |
+
"total": 290.7472343444824,
|
510 |
+
"used": 58.411903381347656
|
511 |
+
}
|
512 |
+
},
|
513 |
+
"gpu": "NVIDIA H100 80GB HBM3",
|
514 |
+
"gpu_count": 8,
|
515 |
+
"gpu_devices": [
|
516 |
+
{
|
517 |
+
"name": "NVIDIA H100 80GB HBM3",
|
518 |
+
"memory_total": 85520809984
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"name": "NVIDIA H100 80GB HBM3",
|
522 |
+
"memory_total": 85520809984
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"name": "NVIDIA H100 80GB HBM3",
|
526 |
+
"memory_total": 85520809984
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"name": "NVIDIA H100 80GB HBM3",
|
530 |
+
"memory_total": 85520809984
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"name": "NVIDIA H100 80GB HBM3",
|
534 |
+
"memory_total": 85520809984
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"name": "NVIDIA H100 80GB HBM3",
|
538 |
+
"memory_total": 85520809984
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"name": "NVIDIA H100 80GB HBM3",
|
542 |
+
"memory_total": 85520809984
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"name": "NVIDIA H100 80GB HBM3",
|
546 |
+
"memory_total": 85520809984
|
547 |
+
}
|
548 |
+
],
|
549 |
+
"memory": {
|
550 |
+
"total": 1999.9855461120605
|
551 |
+
}
|
552 |
+
}
|
wandb/run-20240416_205309-xdytsc71/files/wandb-summary.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"train/loss": 1.6176064014434814, "train/ce_loss": 1.277328610420227, "train/kl_loss": 0.5957434773445129, "train/time": 67493.65216779709, "train/epoch": 0, "train/learning_rate": 0.0, "_timestamp": 1713368583.0371525, "_runtime": 67793.78271961212, "_step": 50000, "_wandb": {"runtime": 67808}, "cosmopedia/auto_math_text/loss": 1.658003807067871, "cosmopedia/auto_math_text/ce_loss": 1.3764740228652954, "cosmopedia/auto_math_text/kl_loss": 0.5568245649337769, "cosmopedia/auto_math_text/perplexity": 3.960910895239512, "cosmopedia/auto_math_text/time": 13.17593264579773, "cosmopedia/auto_math_text/epoch": 0, "cosmopedia/khanacademy/loss": 1.413199782371521, "cosmopedia/khanacademy/ce_loss": 1.0476577281951904, "cosmopedia/khanacademy/kl_loss": 0.5750735998153687, "cosmopedia/khanacademy/perplexity": 2.85096555518061, "cosmopedia/khanacademy/time": 13.071500062942505, "cosmopedia/khanacademy/epoch": 0, "cosmopedia/openstax/loss": 1.6419086456298828, "cosmopedia/openstax/ce_loss": 1.3129570484161377, "cosmopedia/openstax/kl_loss": 0.5915430188179016, "cosmopedia/openstax/perplexity": 3.717149266941545, "cosmopedia/openstax/time": 12.288958072662354, "cosmopedia/openstax/epoch": 0, "cosmopedia/stanford/loss": 1.461927890777588, "cosmopedia/stanford/ce_loss": 1.1311124563217163, "cosmopedia/stanford/kl_loss": 0.5570380091667175, "cosmopedia/stanford/perplexity": 3.099102199007535, "cosmopedia/stanford/time": 12.182331085205078, "cosmopedia/stanford/epoch": 0, "cosmopedia/stories/loss": 1.6099693775177002, "cosmopedia/stories/ce_loss": 1.308800458908081, "cosmopedia/stories/kl_loss": 0.5629290342330933, "cosmopedia/stories/perplexity": 3.70173066988729, "cosmopedia/stories/time": 13.002483367919922, "cosmopedia/stories/epoch": 0, "cosmopedia/web_samples_v1/loss": 1.58097243309021, "cosmopedia/web_samples_v1/ce_loss": 1.3564168214797974, "cosmopedia/web_samples_v1/kl_loss": 0.49583905935287476, "cosmopedia/web_samples_v1/perplexity": 3.882257527739104, "cosmopedia/web_samples_v1/time": 12.979966402053833, "cosmopedia/web_samples_v1/epoch": 0, "cosmopedia/web_samples_v2/loss": 1.638546109199524, "cosmopedia/web_samples_v2/ce_loss": 1.3901900053024292, "cosmopedia/web_samples_v2/kl_loss": 0.5263941287994385, "cosmopedia/web_samples_v2/perplexity": 4.015612968269408, "cosmopedia/web_samples_v2/time": 13.090406656265259, "cosmopedia/web_samples_v2/epoch": 0, "cosmopedia/wikihow/loss": 1.490721344947815, "cosmopedia/wikihow/ce_loss": 1.2553372383117676, "cosmopedia/wikihow/kl_loss": 0.48645156621932983, "cosmopedia/wikihow/perplexity": 3.5090215513289906, "cosmopedia/wikihow/time": 13.000000238418579, "cosmopedia/wikihow/epoch": 0}
|
wandb/run-20240416_205309-xdytsc71/logs/debug-internal.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9d5f155229d3837aab3fecb49a8e8b0dd1b1363e98b714e4bcb36ca9245b0e5
|
3 |
+
size 11245310
|
wandb/run-20240416_205309-xdytsc71/logs/debug.log
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-04-16 20:53:09,244 INFO MainThread:965482 [wandb_setup.py:_flush():76] Current SDK version is 0.16.1
|
2 |
+
2024-04-16 20:53:09,245 INFO MainThread:965482 [wandb_setup.py:_flush():76] Configure stats pid to 965482
|
3 |
+
2024-04-16 20:53:09,245 INFO MainThread:965482 [wandb_setup.py:_flush():76] Loading settings from /admin/home/sanchit/.config/wandb/settings
|
4 |
+
2024-04-16 20:53:09,245 INFO MainThread:965482 [wandb_setup.py:_flush():76] Loading settings from /fsx/sanchit/mistral-debug-4bit/wandb/settings
|
5 |
+
2024-04-16 20:53:09,245 INFO MainThread:965482 [wandb_setup.py:_flush():76] Loading settings from environment variables: {}
|
6 |
+
2024-04-16 20:53:09,245 INFO MainThread:965482 [wandb_setup.py:_flush():76] Applying setup settings: {'_disable_service': False}
|
7 |
+
2024-04-16 20:53:09,245 INFO MainThread:965482 [wandb_setup.py:_flush():76] Inferring run settings from compute environment: {'program_relpath': 'run_distillation.py', 'program_abspath': '/fsx/sanchit/mistral-debug-4bit/run_distillation.py', 'program': '/fsx/sanchit/mistral-debug-4bit/run_distillation.py'}
|
8 |
+
2024-04-16 20:53:09,245 INFO MainThread:965482 [wandb_init.py:_log_setup():524] Logging user logs to /fsx/sanchit/mistral-debug-4bit/wandb/run-20240416_205309-xdytsc71/logs/debug.log
|
9 |
+
2024-04-16 20:53:09,245 INFO MainThread:965482 [wandb_init.py:_log_setup():525] Logging internal logs to /fsx/sanchit/mistral-debug-4bit/wandb/run-20240416_205309-xdytsc71/logs/debug-internal.log
|
10 |
+
2024-04-16 20:53:09,245 INFO MainThread:965482 [wandb_init.py:init():564] calling init triggers
|
11 |
+
2024-04-16 20:53:09,245 INFO MainThread:965482 [wandb_init.py:init():571] wandb.init called with sweep_config: {}
|
12 |
+
config: {}
|
13 |
+
2024-04-16 20:53:09,245 INFO MainThread:965482 [wandb_init.py:init():614] starting backend
|
14 |
+
2024-04-16 20:53:09,245 INFO MainThread:965482 [wandb_init.py:init():618] setting up manager
|
15 |
+
2024-04-16 20:53:09,248 INFO MainThread:965482 [backend.py:_multiprocessing_setup():105] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
|
16 |
+
2024-04-16 20:53:09,254 INFO MainThread:965482 [wandb_init.py:init():624] backend started and connected
|
17 |
+
2024-04-16 20:53:09,257 INFO MainThread:965482 [wandb_init.py:init():716] updated telemetry
|
18 |
+
2024-04-16 20:53:09,257 INFO MainThread:965482 [wandb_init.py:init():749] communicating run to backend with 90.0 second timeout
|
19 |
+
2024-04-16 20:53:09,461 INFO MainThread:965482 [wandb_run.py:_on_init():2254] communicating current version
|
20 |
+
2024-04-16 20:53:09,520 INFO MainThread:965482 [wandb_run.py:_on_init():2263] got version response upgrade_message: "wandb version 0.16.6 is available! To upgrade, please run:\n $ pip install wandb --upgrade"
|
21 |
+
|
22 |
+
2024-04-16 20:53:09,520 INFO MainThread:965482 [wandb_init.py:init():800] starting run threads in backend
|
23 |
+
2024-04-16 20:53:15,732 INFO MainThread:965482 [wandb_run.py:_console_start():2233] atexit reg
|
24 |
+
2024-04-16 20:53:15,732 INFO MainThread:965482 [wandb_run.py:_redirect():2088] redirect: wrap_raw
|
25 |
+
2024-04-16 20:53:15,732 INFO MainThread:965482 [wandb_run.py:_redirect():2153] Wrapping output streams.
|
26 |
+
2024-04-16 20:53:15,732 INFO MainThread:965482 [wandb_run.py:_redirect():2178] Redirects installed.
|
27 |
+
2024-04-16 20:53:15,733 INFO MainThread:965482 [wandb_init.py:init():841] run started, returning control to user process
|
28 |
+
2024-04-17 15:43:17,904 INFO MainThread:965482 [wandb_run.py:_finish():1962] finishing run sanchit-gandhi/distil-mixtral/xdytsc71
|
29 |
+
2024-04-17 15:43:17,906 INFO MainThread:965482 [wandb_run.py:_atexit_cleanup():2202] got exitcode: 0
|
30 |
+
2024-04-17 15:43:17,906 INFO MainThread:965482 [wandb_run.py:_restore():2185] restore
|
31 |
+
2024-04-17 15:43:17,907 INFO MainThread:965482 [wandb_run.py:_restore():2191] restore done
|
32 |
+
2024-04-17 15:43:24,105 INFO MainThread:965482 [wandb_run.py:_footer_history_summary_info():3837] rendering history
|
33 |
+
2024-04-17 15:43:24,106 INFO MainThread:965482 [wandb_run.py:_footer_history_summary_info():3869] rendering summary
|
34 |
+
2024-04-17 15:43:24,118 INFO MainThread:965482 [wandb_run.py:_footer_sync_info():3796] logging synced files
|
wandb/run-20240416_205309-xdytsc71/run-xdytsc71.wandb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4cec0ae8a1202accebb26f3be48ab20552867b6b02ecd7ec9bb685c2b6131603
|
3 |
+
size 26549109
|