ppo-LunarLander-v2 / config.json
sandeeprao's picture
Upload PPO LunarLander-v2 trained agent
b3418dc
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79c374f52830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79c374f528c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79c374f52950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79c374f529e0>", "_build": "<function ActorCriticPolicy._build at 0x79c374f52a70>", "forward": "<function ActorCriticPolicy.forward at 0x79c374f52b00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79c374f52b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79c374f52c20>", "_predict": "<function ActorCriticPolicy._predict at 0x79c374f52cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79c374f52d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79c374f52dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79c374f52e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79c374f54240>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698593236328581260, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABreTj5Q6Vo/jiZaPKAJlb7adjg+wBQTvgAAAAAAAAAAbZE9vgTVxD71AG8+p5s4vm7UEj0a/NM8AAAAAAAAAADNdPw9vpyFP0A2DT6u17y+GRk+PnKyyTwAAAAAAAAAADq/Gr5A4Y8/Mj9qvtvdpb4CTAC+jHSGPQAAAAAAAAAA05gNPuz69LtlqmA8l5VLPTvQID3FRv06AACAPwAAgD8zdgw9IbIXP0MqjL2ll4y+5XxMO8vxLbwAAAAAAAAAAPNMhz0DkAu8wmzzPWv4D77ryhO7mhDwvgAAgD8AAIA/DZePvckgXj/uy+C7HS1dvlJK4bx+cko9AAAAAAAAAACar7I9e8qlus5sGzM0eeyx7e0KOEJsl7MAAIA/AACAPzOERD1pvkc92KDdvdptUr6FBpy9VednPQAAAAAAAAAAszWJvVJgwrn6y6w5/u/ctY6lHToS1si4AAAAAAAAgD/N0ee9Y42OP7/tPb63A4W+azHtveDyfjwAAAAAAAAAADN2AT57DoC6ntRcthc1JLEQMG86uFSGNQAAgD8AAIA/5ilJPQrOCbuCXIG7tjWIPJb2rzt1Smy9AACAPwAAgD+AkFc9KtAcP8oW+73Gm0y+F1lBvcqJkL0AAAAAAAAAAJpQzD3DSRO6woyltcbU0bDvI7e610XANAAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGSlsBZIQOGMAWyUTegDjAF0lEdAldB7NOdoWnV9lChoBkdAcMcPuG9HtmgHTRYDaAhHQJXSk9C/oJR1fZQoaAZHQG+ifcnE2pBoB01oA2gIR0CV1InGsFMadX2UKGgGR0BHTP9LpRoAaAdNQgFoCEdAldgag7HQyHV9lChoBkdAcElKTB68hGgHTYECaAhHQJXZZwaR6nl1fZQoaAZHQGz7ixeLNwBoB02YAmgIR0CV2c9cry2AdX2UKGgGR0BudJKlHjIaaAdNWQNoCEdAldqrM1TBInV9lChoBkdAX0uiQDFId2gHTegDaAhHQJXcd1zQu291fZQoaAZHQG/gqAz544ZoB02lAmgIR0CV3k0q6OHWdX2UKGgGR0Bfgk0WM0gsaAdN6ANoCEdAlfrwGjbi63V9lChoBkdAZB1pztCzC2gHTegDaAhHQJX7fSw4bS91fZQoaAZHQG9P0Cih37loB02IAmgIR0CV+9Z8rqdIdX2UKGgGR0A4IIYm9g4PaAdL02gIR0CV++ZTyauwdX2UKGgGR0BffGfseGO/aAdN6ANoCEdAlfv+WjXWfHV9lChoBkdATi/tMPBi1GgHS/JoCEdAlfw4tQKrrHV9lChoBkdAXiIiJO32EmgHTegDaAhHQJYAwzdk8Rt1fZQoaAZHQHIX8n7YTTRoB00WAmgIR0CWCy1oxpL3dX2UKGgGR0BxIQbaRISUaAdNPwFoCEdAlg15e7cwg3V9lChoBkdAbpzXCj1wpGgHTcQCaAhHQJYQW/gzguR1fZQoaAZHQG3NdvjwQUZoB02GA2gIR0CWEJZtelbedX2UKGgGR0Byfc0CRwIdaAdNjQNoCEdAlha2fK6nSHV9lChoBkdAcVnXl8w6AGgHTXsDaAhHQJYZzYe1a4d1fZQoaAZHQG7XWcBltj1oB03IAmgIR0CWHyJYDDCQdX2UKGgGR0BspV1uBMBZaAdNWQNoCEdAliNoHkcS5HV9lChoBkdAcEuwudwvQGgHTaICaAhHQJYnTHvMKTl1fZQoaAZHQGDD3h4t6HFoB03oA2gIR0CWJ+jJdSl4dX2UKGgGR0Bv+JBZ6lchaAdNyQJoCEdAlir/sAvL5nV9lChoBkdAcBAWGyon8mgHTdwCaAhHQJYsJnVXmvJ1fZQoaAZHQG6V1y/9Hc1oB02LAWgIR0CWLdEK3NLUdX2UKGgGR0Bno3ywwCbMaAdN6ANoCEdAljOYwqRU3nV9lChoBkdAMcT2zv7WNGgHS/1oCEdAljPMKw6hg3V9lChoBkdAcJSqDbrTpmgHTZgDaAhHQJY4vJxNqQB1fZQoaAZHQGBa1iWmgrZoB03oA2gIR0CWTXJIlMRIdX2UKGgGR0Byev3VTaTPaAdNbwFoCEdAlk5EcwQDm3V9lChoBkdAaukx4Y77sWgHTagDaAhHQJZQnleWv8t1fZQoaAZHQG6IbcfvF3poB01VAmgIR0CWUUgCOmzjdX2UKGgGR0Bw9HnvDxb0aAdNGwNoCEdAllQvFJg9eXV9lChoBkdAcS36kqMFU2gHTSABaAhHQJZUkLWqcVh1fZQoaAZHQG7WuRLbpNdoB03UAWgIR0CWVmnWJ79idX2UKGgGR0BwG3GcWj46aAdNAwJoCEdAllhjklu3t3V9lChoBkdAcHJEk0JnhGgHTaoBaAhHQJZb4OavzOJ1fZQoaAZHQG/uTxXnyNJoB00eAmgIR0CWXV0RODaodX2UKGgGR0BmogWxhUiqaAdN6ANoCEdAll1cyBTXKHV9lChoBkdAY6Kf1YhdMWgHTegDaAhHQJZirIkqto11fZQoaAZHQHKanJ9y925oB02WAWgIR0CWZlg00m+kdX2UKGgGR0BtXRPuXu3MaAdNfAFoCEdAlmigkC3gDXV9lChoBkdAQtOwHJLdvmgHTUgBaAhHQJZo5LM9r451fZQoaAZHQG2dFANXo1VoB00GAmgIR0CWbbnuiN83dX2UKGgGR0BibzZ39rGjaAdN6ANoCEdAlm4MX3xnWnV9lChoBkdAbnPLW7OE/WgHTVMCaAhHQJZusA7xNIt1fZQoaAZHQHEoAv114gRoB00AA2gIR0CWbx2Ifr8jdX2UKGgGR0BwG1D7ZWaMaAdNSgJoCEdAlnSzwc5sCXV9lChoBkdAblyLE1l5GGgHTVECaAhHQJZ4xiCrcTJ1fZQoaAZHQGCxnDaXa8JoB03oA2gIR0CWeYc5Ke05dX2UKGgGR0BwbdRqGlANaAdNxQFoCEdAlnoOYMOPNnV9lChoBkdAbfkT8pCrtGgHTX8BaAhHQJZ6ey7f51x1fZQoaAZHQHB4aTB68g9oB010AWgIR0CWfCADJU5udX2UKGgGR0BxQq2d/axpaAdNagFoCEdAlnz5n+Q2dnV9lChoBkdAcIVi+cpb2WgHTTECaAhHQJZ/G26TW5J1fZQoaAZHQG4koPCl7+loB02bAWgIR0CWgueP7vXtdX2UKGgGR0BtaRaV2Rq5aAdNkwFoCEdAloOU0rK/23V9lChoBkdAbL1k+X7cf2gHTTUCaAhHQJaYHirDIil1fZQoaAZHQHDvN1U2kzpoB037AWgIR0CWmMWMju8cdX2UKGgGR0BwLF4bCJoCaAdNsgFoCEdAlpucPWhAW3V9lChoBkdAcJmwGGEf1mgHTU0BaAhHQJafAMuvllt1fZQoaAZHQHBWGU8mrsBoB01/AWgIR0CWn1qSowVTdX2UKGgGR0BluLBsQ/X5aAdN6ANoCEdAlqHwR02ca3V9lChoBkdAbZey9mHxjWgHTbUBaAhHQJaiiX3QD3d1fZQoaAZHQGFzPUBnzxxoB03oA2gIR0CWpNV6eGwidX2UKGgGR0BvM6pFTefqaAdNYwFoCEdAlqUHhbW3B3V9lChoBkdAcDqo2GZeA2gHTZ4BaAhHQJal80/GEPF1fZQoaAZHQG9CbwrlNlBoB029AmgIR0CWpnLgXMyKdX2UKGgGR0BtZ442jwhGaAdN9AFoCEdAlqfB9gF5fXV9lChoBkdAZFCN+b3GoGgHTegDaAhHQJaosXpGFzx1fZQoaAZHQHIXVm4AjptoB02QAWgIR0CWrJpAlfJFdX2UKGgGR0BwkSJuVHFxaAdNPAFoCEdAlqzJtJnQIHV9lChoBkdAb7gyfL9uP2gHTXsCaAhHQJatm/O+qR51fZQoaAZHQG9TQvxpcopoB00LAmgIR0CWspl3Qla9dX2UKGgGR0Bu9qS9ugpSaAdNugFoCEdAlrLzAWSEDnV9lChoBkdAUN5TsIE8rGgHS+loCEdAlrNDPBzmwXV9lChoBkdAbGBO58Sf2GgHTY0BaAhHQJazolQdjoZ1fZQoaAZHQDspy4nWrfdoB0vtaAhHQJa0WvwEyL11fZQoaAZHQGxe/QSi/PBoB01iAWgIR0CWtb/1QIlddX2UKGgGR0BvtwaHbh3raAdNYAFoCEdAlre5AhStNnV9lChoBkdActx4T9KmK2gHTc8BaAhHQJa4bKfWcz91fZQoaAZHQHF6iwfQrtpoB02LAWgIR0CWuMk+X7cgdX2UKGgGR0Bw5d5MURFraAdNwAFoCEdAlrlJs9B8hXV9lChoBkdAcZUI3R5TqGgHTWcBaAhHQJa53gMtsep1fZQoaAZHQHDC7Jnxri5oB03aAWgIR0CWu+4D9wWFdX2UKGgGR0BwyYYaYNRWaAdNVgFoCEdAlryXdweeWnV9lChoBkdAb+mT5ftx/GgHTZwBaAhHQJa+tea8Yht1fZQoaAZHQHClzkELYwtoB01CAWgIR0CWv4Tjebd8dX2UKGgGR0BtC91p0wJxaAdNXgFoCEdAlsFwDNhVl3V9lChoBkdAb0AFiay8jGgHTXABaAhHQJbB7SQYDT11fZQoaAZHQGyq3u/k/8loB019AWgIR0CWwzIsRQJpdX2UKGgGR0ByAdaIN3GGaAdNdgFoCEdAlsVp2MbWE3V9lChoBkdAb8SVQhwEQ2gHTTQCaAhHQJbFrjR2KVJ1fZQoaAZHQG1BcophF3JoB01rAWgIR0CWxvMQ2/BWdX2UKGgGR0BvjFPJq7AdaAdNRgFoCEdAlsb8WoFV1nV9lChoBkdAbzIF8ohIOGgHTcUBaAhHQJbHLblA/s51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}