Upload . with huggingface_hub
Browse files- .gitattributes +2 -0
- 1_Pooling/config.json +7 -0
- 2_Dense/config.json +1 -0
- 2_Dense/pytorch_model.bin +3 -0
- README.md +88 -0
- config.json +26 -0
- config_sentence_transformers.json +7 -0
- eval/mse_evaluation_TED2020-en-ja-dev.tsv.gz_results.csv +21 -0
- eval/mse_evaluation_TED2020-en-ko-dev.tsv.gz_results.csv +21 -0
- eval/similarity_evaluation_STS.en-en.txt_results.csv +21 -0
- eval/translation_evaluation_TED2020-en-ja-dev.tsv.gz_results.csv +21 -0
- eval/translation_evaluation_TED2020-en-ko-dev.tsv.gz_results.csv +21 -0
- modules.json +20 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +23 -0
- unigram.json +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
36 |
+
unigram.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
2_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 384, "out_features": 1536, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
|
2_Dense/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:647329e1f5c51af68d3318eb4f11725d465f1cccc1e098d34def14e2fced7a75
|
3 |
+
size 2366655
|
README.md
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
|
8 |
+
---
|
9 |
+
|
10 |
+
# {MODEL_NAME}
|
11 |
+
|
12 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1536 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
+
|
14 |
+
<!--- Describe your model here -->
|
15 |
+
|
16 |
+
## Usage (Sentence-Transformers)
|
17 |
+
|
18 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
19 |
+
|
20 |
+
```
|
21 |
+
pip install -U sentence-transformers
|
22 |
+
```
|
23 |
+
|
24 |
+
Then you can use the model like this:
|
25 |
+
|
26 |
+
```python
|
27 |
+
from sentence_transformers import SentenceTransformer
|
28 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
+
|
30 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
31 |
+
embeddings = model.encode(sentences)
|
32 |
+
print(embeddings)
|
33 |
+
```
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
## Evaluation Results
|
38 |
+
|
39 |
+
<!--- Describe how your model was evaluated -->
|
40 |
+
|
41 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
42 |
+
|
43 |
+
|
44 |
+
## Training
|
45 |
+
The model was trained with the parameters:
|
46 |
+
|
47 |
+
**DataLoader**:
|
48 |
+
|
49 |
+
`torch.utils.data.dataloader.DataLoader` of length 5629 with parameters:
|
50 |
+
```
|
51 |
+
{'batch_size': 256, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
52 |
+
```
|
53 |
+
|
54 |
+
**Loss**:
|
55 |
+
|
56 |
+
`sentence_transformers.losses.MSELoss.MSELoss`
|
57 |
+
|
58 |
+
Parameters of the fit()-Method:
|
59 |
+
```
|
60 |
+
{
|
61 |
+
"epochs": 10,
|
62 |
+
"evaluation_steps": 5000,
|
63 |
+
"evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
|
64 |
+
"max_grad_norm": 1,
|
65 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
66 |
+
"optimizer_params": {
|
67 |
+
"lr": 1e-05
|
68 |
+
},
|
69 |
+
"scheduler": "WarmupLinear",
|
70 |
+
"steps_per_epoch": null,
|
71 |
+
"warmup_steps": 0,
|
72 |
+
"weight_decay": 0.01
|
73 |
+
}
|
74 |
+
```
|
75 |
+
|
76 |
+
|
77 |
+
## Full Model Architecture
|
78 |
+
```
|
79 |
+
SentenceTransformer(
|
80 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
81 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
82 |
+
(2): Dense({'in_features': 384, 'out_features': 1536, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
83 |
+
)
|
84 |
+
```
|
85 |
+
|
86 |
+
## Citing & Authors
|
87 |
+
|
88 |
+
<!--- Describe where people can find more information -->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.26.1",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 250037
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.26.1",
|
5 |
+
"pytorch": "1.13.1+cu116"
|
6 |
+
}
|
7 |
+
}
|
eval/mse_evaluation_TED2020-en-ja-dev.tsv.gz_results.csv
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,MSE
|
2 |
+
0,5000,14.090806245803833
|
3 |
+
0,-1,14.041325449943542
|
4 |
+
1,5000,13.756965100765228
|
5 |
+
1,-1,13.731969892978668
|
6 |
+
2,5000,13.59749436378479
|
7 |
+
2,-1,13.583962619304657
|
8 |
+
3,5000,13.513915240764618
|
9 |
+
3,-1,13.504542410373688
|
10 |
+
4,5000,13.454103469848633
|
11 |
+
4,-1,13.447530567646027
|
12 |
+
5,5000,13.414488732814789
|
13 |
+
5,-1,13.411219418048859
|
14 |
+
6,5000,13.38731050491333
|
15 |
+
6,-1,13.383430242538452
|
16 |
+
7,5000,13.36725503206253
|
17 |
+
7,-1,13.365139067173004
|
18 |
+
8,5000,13.354888558387756
|
19 |
+
8,-1,13.354355096817017
|
20 |
+
9,5000,13.350608944892883
|
21 |
+
9,-1,13.350439071655273
|
eval/mse_evaluation_TED2020-en-ko-dev.tsv.gz_results.csv
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,MSE
|
2 |
+
0,5000,14.07613605260849
|
3 |
+
0,-1,14.028197526931763
|
4 |
+
1,5000,13.723884522914886
|
5 |
+
1,-1,13.6981800198555
|
6 |
+
2,5000,13.554643094539642
|
7 |
+
2,-1,13.540615141391754
|
8 |
+
3,5000,13.463293015956879
|
9 |
+
3,-1,13.45561146736145
|
10 |
+
4,5000,13.401681184768677
|
11 |
+
4,-1,13.395018875598907
|
12 |
+
5,5000,13.358426094055176
|
13 |
+
5,-1,13.355842232704163
|
14 |
+
6,5000,13.329306244850159
|
15 |
+
6,-1,13.32559585571289
|
16 |
+
7,5000,13.307400047779083
|
17 |
+
7,-1,13.305117189884186
|
18 |
+
8,5000,13.294477760791779
|
19 |
+
8,-1,13.29374760389328
|
20 |
+
9,5000,13.289938867092133
|
21 |
+
9,-1,13.289736211299896
|
eval/similarity_evaluation_STS.en-en.txt_results.csv
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
+
0,5000,0.5584715887070306,0.6106435199153483,0.6204285313762743,0.6239282647204628,0.6227081729309086,0.6273839897146172,0.027078836467990197,0.024595997717015587
|
3 |
+
0,-1,0.5640430594026749,0.6186581880052393,0.6297266900683036,0.635489759787113,0.6316028120937888,0.6394859463320773,0.045096663803948285,0.040924010016982315
|
4 |
+
1,5000,0.649871173945208,0.6909243552105845,0.7049685502601991,0.706320590270748,0.7046418130084839,0.7055979247547292,0.24960006006965837,0.2243157605688369
|
5 |
+
1,-1,0.654431513986989,0.6967910153730746,0.7092238454103693,0.7106462046599828,0.7089872621386482,0.7106415919013699,0.261963468297667,0.2357957635666594
|
6 |
+
2,5000,0.6909860756397656,0.726778559115453,0.7370819527467755,0.7370196520291642,0.7360345226996672,0.736457279874943,0.34336794441295065,0.32259058281639424
|
7 |
+
2,-1,0.6925700008812241,0.7266924542880124,0.7376618810301628,0.7381028815100905,0.7366987361383045,0.7364538203059834,0.3534225145052863,0.3319829281453343
|
8 |
+
3,5000,0.7140525697384895,0.7446187874473444,0.7544234287953692,0.7552584995845194,0.7531777594196064,0.7534291563979586,0.39927080695014033,0.38474942710780186
|
9 |
+
3,-1,0.7172877346684642,0.7465599900302677,0.7574907890397503,0.7588060953543806,0.7564181276915455,0.7577989763905669,0.3966220132454458,0.3820006073710722
|
10 |
+
4,5000,0.7277845825777627,0.7558562362214394,0.7667535083086637,0.7674703936155867,0.7659218899158776,0.7662829926693193,0.4277044285837922,0.41529626783199275
|
11 |
+
4,-1,0.7270212141806779,0.7567734063923016,0.7668600640782219,0.7683260603382771,0.7659780476000536,0.7673643001674902,0.4211974950752341,0.40880150370504786
|
12 |
+
5,5000,0.7372409756414472,0.7675249779258391,0.7756372225059973,0.7778275742877221,0.7749333533921645,0.7776945730810506,0.43997674548946264,0.42831846979272375
|
13 |
+
5,-1,0.7385167697807389,0.7691117668886722,0.7770976301025854,0.7794554936815202,0.7764028043370276,0.7785748411830099,0.4485518914525139,0.43741867374284765
|
14 |
+
6,5000,0.7471523207701108,0.7759455687736643,0.7839808264785212,0.7884303843559941,0.7832520194143462,0.7883934822870909,0.45761539360357023,0.4494825751017514
|
15 |
+
6,-1,0.7462694309237172,0.7755292673088513,0.783523102715065,0.7870769240996628,0.7828458536185017,0.7866898367727313,0.45699358423571385,0.4476870588116851
|
16 |
+
7,5000,0.7494204953256803,0.7786755530793913,0.7873064897829533,0.7914044604716529,0.7866547871962861,0.7911150098686943,0.4669221147456885,0.45799888069079403
|
17 |
+
7,-1,0.7496235816376139,0.7792994286817841,0.7874282131988112,0.790786735214077,0.7867875683309122,0.790889369093214,0.4682683340095791,0.4605701092209275
|
18 |
+
8,5000,0.753771049087656,0.7833767228990252,0.7907834229307895,0.794613018483467,0.7900408518349241,0.7952957067581742,0.4777997267685433,0.470604781186712
|
19 |
+
8,-1,0.7540753944433641,0.7833525059163076,0.7910391569628871,0.7943181863287933,0.7903067170762724,0.7952368940858598,0.4795988561212103,0.4734016504923259
|
20 |
+
9,5000,0.7542413301647596,0.7830299972099566,0.7915892895561383,0.7945799603800745,0.7908470471363674,0.7958972873606049,0.47685777735667634,0.47095650403094463
|
21 |
+
9,-1,0.7543749648330546,0.7832541003992327,0.7916491895457073,0.7947237246901762,0.7909162343463914,0.7962232556359156,0.4775897823612356,0.4715715385126629
|
eval/translation_evaluation_TED2020-en-ja-dev.tsv.gz_results.csv
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,src2trg,trg2src
|
2 |
+
0,5000,0.797,0.772
|
3 |
+
0,-1,0.81,0.792
|
4 |
+
1,5000,0.887,0.861
|
5 |
+
1,-1,0.893,0.868
|
6 |
+
2,5000,0.902,0.888
|
7 |
+
2,-1,0.901,0.888
|
8 |
+
3,5000,0.911,0.898
|
9 |
+
3,-1,0.911,0.897
|
10 |
+
4,5000,0.913,0.899
|
11 |
+
4,-1,0.913,0.9
|
12 |
+
5,5000,0.913,0.901
|
13 |
+
5,-1,0.914,0.902
|
14 |
+
6,5000,0.918,0.899
|
15 |
+
6,-1,0.916,0.903
|
16 |
+
7,5000,0.919,0.903
|
17 |
+
7,-1,0.919,0.905
|
18 |
+
8,5000,0.922,0.907
|
19 |
+
8,-1,0.921,0.906
|
20 |
+
9,5000,0.921,0.907
|
21 |
+
9,-1,0.921,0.907
|
eval/translation_evaluation_TED2020-en-ko-dev.tsv.gz_results.csv
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,src2trg,trg2src
|
2 |
+
0,5000,0.837,0.818
|
3 |
+
0,-1,0.855,0.842
|
4 |
+
1,5000,0.919,0.905
|
5 |
+
1,-1,0.922,0.908
|
6 |
+
2,5000,0.936,0.918
|
7 |
+
2,-1,0.939,0.921
|
8 |
+
3,5000,0.941,0.927
|
9 |
+
3,-1,0.941,0.926
|
10 |
+
4,5000,0.946,0.929
|
11 |
+
4,-1,0.946,0.927
|
12 |
+
5,5000,0.947,0.93
|
13 |
+
5,-1,0.947,0.933
|
14 |
+
6,5000,0.948,0.934
|
15 |
+
6,-1,0.948,0.936
|
16 |
+
7,5000,0.949,0.936
|
17 |
+
7,-1,0.95,0.936
|
18 |
+
8,5000,0.949,0.938
|
19 |
+
8,-1,0.949,0.938
|
20 |
+
9,5000,0.95,0.938
|
21 |
+
9,-1,0.95,0.939
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Dense",
|
18 |
+
"type": "sentence_transformers.models.Dense"
|
19 |
+
}
|
20 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e06f80685fbda0f9a023647c6f740c78d72d48954c3bf6b27cdc082d29448386
|
3 |
+
size 470686253
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b60b6b43406a48bf3638526314f3d232d97058bc93472ff2de930d43686fa441
|
3 |
+
size 17082913
|
tokenizer_config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"do_lower_case": true,
|
5 |
+
"eos_token": "</s>",
|
6 |
+
"mask_token": {
|
7 |
+
"__type": "AddedToken",
|
8 |
+
"content": "<mask>",
|
9 |
+
"lstrip": true,
|
10 |
+
"normalized": true,
|
11 |
+
"rstrip": false,
|
12 |
+
"single_word": false
|
13 |
+
},
|
14 |
+
"model_max_length": 512,
|
15 |
+
"name_or_path": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
16 |
+
"pad_token": "<pad>",
|
17 |
+
"sep_token": "</s>",
|
18 |
+
"special_tokens_map_file": null,
|
19 |
+
"strip_accents": null,
|
20 |
+
"tokenize_chinese_chars": true,
|
21 |
+
"tokenizer_class": "BertTokenizer",
|
22 |
+
"unk_token": "<unk>"
|
23 |
+
}
|
unigram.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71b44701d7efd054205115acfa6ef126c5d2f84bd3affe0c59e48163674d19a6
|
3 |
+
size 14763234
|