--- license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: gpt2-alpaca-instruction-fine-tuning-lora results: [] --- # gpt2-alpaca-instruction-fine-tuning-lora This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.118 | 0.11 | 1000 | 1.7807 | | 1.8878 | 0.22 | 2000 | 1.7477 | | 1.8609 | 0.33 | 3000 | 1.7318 | | 1.8489 | 0.44 | 4000 | 1.7207 | | 1.8416 | 0.55 | 5000 | 1.7134 | | 1.8181 | 0.66 | 6000 | 1.7082 | | 1.8144 | 0.77 | 7000 | 1.7021 | | 1.816 | 0.88 | 8000 | 1.6987 | | 1.7825 | 0.99 | 9000 | 1.6981 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3