File size: 1,647 Bytes
19aa631
 
97c7f49
 
 
 
 
 
 
 
19aa631
 
97c7f49
 
19aa631
97c7f49
19aa631
97c7f49
 
 
 
19aa631
97c7f49
19aa631
97c7f49
19aa631
97c7f49
19aa631
97c7f49
19aa631
97c7f49
19aa631
97c7f49
19aa631
97c7f49
19aa631
97c7f49
19aa631
97c7f49
 
 
 
 
 
 
 
 
 
 
 
19aa631
97c7f49
19aa631
97c7f49
 
 
 
19aa631
 
97c7f49
19aa631
97c7f49
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
library_name: transformers
base_model: Harveenchadha/vakyansh-wav2vec2-nepali-nem-130
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: indic-nepali-finetune-colab-test
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# indic-nepali-finetune-colab-test

This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-nepali-nem-130](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-nepali-nem-130) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 414.3360
- Wer: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:---:|
| 5480.8856     | 14.0351 | 400  | 417.9039        | 1.0 |
| 944.0373      | 28.0702 | 800  | 414.3360        | 1.0 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.19.1