--- library_name: transformers license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer metrics: - wer model-index: - name: UDA-LIDI-Whisper-large-v3-turbo-ECU-911 results: [] --- # UDA-LIDI-Whisper-large-v3-turbo-ECU-911 This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8685 - Wer: 40.1779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.7289 | 1.0 | 91 | 0.6513 | 40.7708 | | 0.4426 | 2.0 | 182 | 0.6487 | 40.1779 | | 0.298 | 3.0 | 273 | 0.6699 | 40.1186 | | 0.2058 | 4.0 | 364 | 0.6912 | 42.6285 | | 0.1435 | 5.0 | 455 | 0.7103 | 39.6838 | | 0.1022 | 6.0 | 546 | 0.7852 | 41.8379 | | 0.0735 | 7.0 | 637 | 0.8315 | 40.6324 | | 0.0568 | 8.0 | 728 | 0.8265 | 40.6126 | | 0.0444 | 9.0 | 819 | 0.8538 | 40.0198 | | 0.0399 | 9.8950 | 900 | 0.8685 | 40.1779 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0