Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
language:
|
5 |
+
- it
|
6 |
+
- en
|
7 |
+
tags:
|
8 |
+
- pretrained
|
9 |
+
datasets:
|
10 |
+
- uonlp/CulturaX
|
11 |
+
- HuggingFaceFW/fineweb
|
12 |
+
- bigcode/the-stack-v2
|
13 |
+
inference:
|
14 |
+
parameters:
|
15 |
+
temperature: 0.5
|
16 |
+
do_sample: true
|
17 |
+
widget:
|
18 |
+
- text: 'La capitale dell''Italia è '
|
19 |
+
example_title: Example 1
|
20 |
+
- text: 'Nel mezzo del cammin di nostra vita '
|
21 |
+
example_title: Example 2
|
22 |
+
- text: 'Una cena senza vino è come '
|
23 |
+
example_title: Example 3
|
24 |
+
---
|
25 |
+
|
26 |
+
<div style="text-align: center; display: flex; flex-direction: column; align-items: center;">
|
27 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/5f0b462819cb630495b814d7/DVA4MnFUs3UHBnTrX9jG6.png" style="max-width: 550px; height: auto;">
|
28 |
+
</div>
|
29 |
+
|
30 |
+
# Model Card for Minerva-7B-base-v1.0
|
31 |
+
Minerva is the first family of **LLMs pretrained from scratch on Italian** developed by [Sapienza NLP](https://nlp.uniroma1.it)
|
32 |
+
in collaboration with [Future Artificial Intelligence Research (FAIR)](https://fondazione-fair.it/) and [CINECA](https://www.cineca.it/).
|
33 |
+
Notably, the Minerva models are truly-open (data and model) Italian-English LLMs, with approximately half of the pretraining data
|
34 |
+
including Italian text.
|
35 |
+
|
36 |
+
* [Minerva LLMs - website](https://nlp.uniroma1.it/minerva/)
|
37 |
+
|
38 |
+
## Description
|
39 |
+
This is the model card for **Minerva-7B-base-v1.0**, a 7 billion parameter model trained on 2.2T billion tokens (1T billion in Italian,
|
40 |
+
1T billion in English, and 200 billion in code).
|
41 |
+
|
42 |
+
This model is part of the Minerva LLM family:
|
43 |
+
|
44 |
+
* [Minerva-350M-base-v1.0](https://huggingface.co/sapienzanlp/Minerva-350M-base-v1.0)
|
45 |
+
* [Minerva-1B-base-v1.0](https://huggingface.co/sapienzanlp/Minerva-1B-base-v1.0)
|
46 |
+
* [Minerva-3B-base-v1.0](https://huggingface.co/sapienzanlp/Minerva-3B-base-v1.0)
|
47 |
+
* [Minerva-7B-base-v1.0](https://huggingface.co/sapienzanlp/Minerva-3B-base-v1.0)
|
48 |
+
|
49 |
+
## 🚨⚠️🚨 Bias, Risks, and Limitations 🚨⚠️🚨
|
50 |
+
*This section identifies foreseeable harms and misunderstandings.*
|
51 |
+
|
52 |
+
This is a foundation model, not subject to alignment. Model may:
|
53 |
+
|
54 |
+
- Overrepresent some viewpoints and underrepresent others
|
55 |
+
- Contain stereotypes
|
56 |
+
- Contain [personal information](#personal-data-and-information)
|
57 |
+
- Generate:
|
58 |
+
- Racist and sexist content
|
59 |
+
- Hateful, abusive, or violent language
|
60 |
+
- Discriminatory or prejudicial language
|
61 |
+
- Content that may not be appropriate for all settings, including sexual content
|
62 |
+
- Make errors, including producing incorrect information or historical facts as if it were factual
|
63 |
+
- Generate irrelevant or repetitive outputs
|
64 |
+
|
65 |
+
We are aware of the biases and potential problematic/toxic content that current pretrained large language models exhibit: more specifically, as probabilistic models of (Italian and English) languages, they reflect and amplify the biases of their training data.
|
66 |
+
For more information about this issue, please refer to our survey:
|
67 |
+
* [Biases in Large Language Models: Origins, Inventory, and Discussion](https://dl.acm.org/doi/full/10.1145/3597307)
|
68 |
+
|
69 |
+
## How to use Minerva with Hugging Face transformers
|
70 |
+
|
71 |
+
```python
|
72 |
+
import transformers
|
73 |
+
import torch
|
74 |
+
|
75 |
+
model_id = "sapienzanlp/Minerva-7B-base-v1.0"
|
76 |
+
|
77 |
+
# Initialize the pipeline.
|
78 |
+
pipeline = transformers.pipeline(
|
79 |
+
"text-generation",
|
80 |
+
model=model_id,
|
81 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
82 |
+
device_map="auto",
|
83 |
+
)
|
84 |
+
|
85 |
+
# Input text for the model.
|
86 |
+
input_text = "La capitale dell'Italia è"
|
87 |
+
|
88 |
+
# Compute the outputs.
|
89 |
+
output = pipeline(
|
90 |
+
input_text,
|
91 |
+
max_new_tokens=128,
|
92 |
+
)
|
93 |
+
|
94 |
+
# Output:
|
95 |
+
# [{'generated_text': "La capitale dell'Italia è la città di Roma, che si trova a [...]"}]
|
96 |
+
```
|
97 |
+
|
98 |
+
## Model Architecture
|
99 |
+
|
100 |
+
Minerva-7B-base-v1.0 is a Transformer model based on the Mistral architecture, where the number of layers, number of heads, and the hidden states dimension are modified to reach 3B parameters.
|
101 |
+
Please, take a look at the configuration file for a detailed breakdown of the hyperparameters we chose for this model.
|
102 |
+
|
103 |
+
The Minerva LLM family is composed of:
|
104 |
+
|
105 |
+
| Model Name | Tokens | Layers | Hidden Size | Attention Heads | KV Heads | Sliding Window | Max Context Length |
|
106 |
+
| --- | --- | --- | --- | --- | --- | --- | --- |
|
107 |
+
| Minerva-350M-base-v1.0 | 70B (35B it + 35B en) | 16 | 1152 | 16 | 4 | 2048 | 16384 |
|
108 |
+
| Minerva-1B-base-v1.0 | 200B (100B it + 100B en) | 16 | 2048 | 16 | 4 | 2048 | 16384 |
|
109 |
+
| Minerva-3B-base-v1.0 | 660B (330B it + 330B en) | 32 | 2560 | 32 | 8 | 2048 | 16384 |
|
110 |
+
| Minerva-7B-base-v1.0 | 2.2T (1T it + 1T en + 200B code) | 32 | 4096 | 32 | 8 | None | 4096 |
|
111 |
+
|
112 |
+
## Model Training
|
113 |
+
|
114 |
+
Minerva-7B-base-v1.0 was trained using [llm-foundry 0.8.0](https://github.com/riccorl/llm-foundry) from [MosaicML](https://mosaicml.com/). The hyperparameters used are the following:
|
115 |
+
|
116 |
+
| Model Name | Optimizer | lr | betas | eps | weight decay | Scheduler | Warmup Steps | Batch Size (Tokens) | Total Steps |
|
117 |
+
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
118 |
+
| Minerva-350M-base-v1.0 | Decoupled AdamW | 2e-4 | (0.9, 0.95) | 1e-8 | 0.0 | Cosine | 2% | 4M | 16,690 |
|
119 |
+
| Minerva-1B-base-v1.0 | Decoupled AdamW | 2e-4 | (0.9, 0.95) | 1e-8 | 0.0 | Cosine | 2% | 4M | 47,684 |
|
120 |
+
| Minerva-3B-base-v1.0 | Decoupled AdamW | 2e-4 | (0.9, 0.95) | 1e-8 | 0.0 | Cosine | 2% | 4M | 157,357 |
|
121 |
+
| Minerva-7B-base-v1.0 | AdamW | 3e-4 | (0.9, 0.95) | 1e-5 | 0.1 | Cosine | 2000 | 4M | 591,558 |
|
122 |
+
|
123 |
+
## Model Evaluation
|
124 |
+
|
125 |
+
We assessed our model using the [LM-Evaluation-Harness](https://github.com/EleutherAI/lm-evaluation-harness) library, which serves as a comprehensive framework for testing generative language models across a wide range of evaluation tasks.
|
126 |
+
|
127 |
+
All the reported benchmark data was already present in the LM-Evaluation-Harness suite.
|
128 |
+
|
129 |
+
**Italian** Data:
|
130 |
+
| Task | Accuracy |
|
131 |
+
| --- | --- |
|
132 |
+
<!-- | [xcopa](https://huggingface.co/datasets/xcopa) (0-shot) | 0.694 |
|
133 |
+
| [Hellaswag](https://huggingface.co/datasets/alexandrainst/m_hellaswag) (5-shot) | 0.5293 |
|
134 |
+
| [Belebele](https://huggingface.co/datasets/facebook/belebele) (5-shot) | 0.2333 |
|
135 |
+
| [TruthfulQA MC 1](https://huggingface.co/datasets/alexandrainst/m_truthfulqa) (0-shot) | 0.2363 |
|
136 |
+
| [TruthfulQA MC 2](https://huggingface.co/datasets/alexandrainst/m_truthfulqa) (0-shot) | 0.3731 |
|
137 |
+
| [M MMLU](https://huggingface.co/datasets/alexandrainst/m_mmlu) (5-shot) | 0.2612 |
|
138 |
+
| [arc challenge](https://huggingface.co/datasets/alexandrainst/m_arc) (5-shot) | 0.3268 | -->
|
139 |
+
|
140 |
+
|
141 |
+
**English** Data:
|
142 |
+
| Task | Accuracy |
|
143 |
+
| --- | --- |
|
144 |
+
<!-- | [Hellaswag](https://huggingface.co/datasets/Rowan/hellaswag) (5-shot) | 0.6168 |
|
145 |
+
| [piqa](https://huggingface.co/datasets/piqa) (5-shot) | 0.7535 |
|
146 |
+
| [sciq](https://huggingface.co/datasets/sciq) (5-shot) | 0.925 |
|
147 |
+
| [Belebele](https://huggingface.co/datasets/facebook/belebele) (5-shot) | 0.2278 |
|
148 |
+
| [TruthfulQA MC 1](https://huggingface.co/datasets/truthful_qa) (0-shot) | 0.2142 |
|
149 |
+
| [TruthfulQA MC 2](https://huggingface.co/datasets/truthful_qa) (0-shot) | 0.3643 |
|
150 |
+
| [M MMLU](https://huggingface.co/datasets/alexandrainst/m_mmlu) (5-shot) | 0.263 |
|
151 |
+
| [arc challenge](allenai/ai2_arc) (5-shot) | 0.3319 |
|
152 |
+
| [arc easy](allenai/ai2_arc) (5-shot) | 0.6540 | -->
|
153 |
+
|
154 |
+
|
155 |
+
## Training Data
|
156 |
+
|
157 |
+
<!-- Minerva-7B-base-v1.0 was trained on 1T Italian tokens and 1T English tokens sampled from CulturaX.
|
158 |
+
|
159 |
+
We have extracted some statistics on Italian (115B tokens) and English (210B tokens) documents from CulturaX on the selected sources:
|
160 |
+
|
161 |
+
*Proportion of number of tokens per domain (Italian)*
|
162 |
+
<img src="https://github.com/Andrew-Wyn/images/blob/master/minerva/top_25_url_tokens_proportion_culturax_it.png?raw=true" alt="italian-tok-counts" border="0" width="1800px">
|
163 |
+
|
164 |
+
*Proportion of number of tokens per domain (English)*
|
165 |
+
<img src="https://github.com/Andrew-Wyn/images/blob/master/minerva/top_25_url_tokens_proportion_culturax_en.png?raw=true" alt="english-tok-counts" border="0" width="1800px"> -->
|
166 |
+
|
167 |
+
## Tokenizer Fertility
|
168 |
+
|
169 |
+
The tokenizer fertility measures the average amount of tokens produced per tokenized word.
|
170 |
+
A tokenizer displaying high fertility values in a particular language typically indicates that it segments words in that language extensively.
|
171 |
+
The tokenizer fertility is strictly correlated with the inference speed of the model with respect to a specific language,
|
172 |
+
as higher values mean longer sequences of tokens to generate and thus lower inference speed.
|
173 |
+
|
174 |
+
**Fertility computed over a sample of Cultura X (CX) data and Wikipedia (Wp):**
|
175 |
+
|
176 |
+
| Model | Voc. Size | Fertility IT (CX) | Fertility EN (CX) | Fertility IT (Wp) | Fertility EN (Wp) |
|
177 |
+
| --- | --- | --- |--- | --- |--- |
|
178 |
+
| Mistral-7B-v0.1 | 32000 | 1.87 | 1.32 | 2.05 | 1.57 |
|
179 |
+
| gemma-7b | 256000 | 1.42 | 1.18 | 1.56 | 1.34 |
|
180 |
+
| Minerva-3B-base-v1.0 | 32768 | 1.39 | 1.32 | 1.66 | 1.59 |
|
181 |
+
| Minerva-7B-base-v1.0 | 51200 | - | - | - | - |
|
182 |
+
|
183 |
+
## Notice
|
184 |
+
|
185 |
+
Minerva-7B-base-v1.0 is a pretrained base model and, therefore, has no moderation mechanisms.
|
186 |
+
|
187 |
+
## The Sapienza NLP Team
|
188 |
+
|
189 |
+
* **Riccardo Orlando:** data preprocessing, model training
|
190 |
+
* **Pere-Lluis Huguet Cabot:** data preprocessing, vocabulary, evaluation
|
191 |
+
* **Luca Moroni:** data curation, data analysis, downstream tasks, evaluation
|
192 |
+
* **Simone Conia:** data curation, evaluation, project supervision
|
193 |
+
* **Edoardo Barba:** data preprocessing, downstream tasks, project supervision
|
194 |
+
* **Roberto Navigli:** project coordinator
|
195 |
+
|
196 |
+
### Special thanks for their support
|
197 |
+
* Giuseppe Fiameni, Nvidia
|
198 |
+
* Sergio Orlandini, CINECA
|
199 |
+
|
200 |
+
## Acknowledgments
|
201 |
+
|
202 |
+
This work was funded by the PNRR MUR project [PE0000013-FAIR](https://fondazione-fair.it).
|
203 |
+
We acknowledge the [CINECA](https://www.cineca.it) award "IscB_medit" under the ISCRA initiative, for the availability of high performance computing resources and support.
|