tikim
commited on
Commit
·
645fa57
1
Parent(s):
dea46fb
Add train and test codes
Browse files- test.py +46 -0
- test_eval.ipynb +183 -0
- training.ipynb +261 -0
test.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import(
|
2 |
+
EncoderDecoderModel,
|
3 |
+
PreTrainedTokenizerFast,
|
4 |
+
# XLMRobertaTokenizerFast,
|
5 |
+
BertJapaneseTokenizer,
|
6 |
+
BertTokenizerFast,
|
7 |
+
)
|
8 |
+
|
9 |
+
import pandas as pd
|
10 |
+
csv_test = pd.read_csv('./output/ffac_full.csv')
|
11 |
+
# csv_test = pd.read_csv('ffac_test.csv')
|
12 |
+
|
13 |
+
import csv
|
14 |
+
|
15 |
+
encoder_model_name = "cl-tohoku/bert-base-japanese-v2"
|
16 |
+
decoder_model_name = "skt/kogpt2-base-v2"
|
17 |
+
|
18 |
+
src_tokenizer = BertJapaneseTokenizer.from_pretrained(encoder_model_name)
|
19 |
+
trg_tokenizer = PreTrainedTokenizerFast.from_pretrained(decoder_model_name)
|
20 |
+
model = EncoderDecoderModel.from_pretrained("./dump/best_model")
|
21 |
+
|
22 |
+
def main():
|
23 |
+
data_test = []
|
24 |
+
data_test_label = []
|
25 |
+
data_test_infer = []
|
26 |
+
for row in csv_test.itertuples():
|
27 |
+
data_test.append(row[1])
|
28 |
+
data_test_label.append(row[2])
|
29 |
+
|
30 |
+
for text in data_test:
|
31 |
+
embeddings = src_tokenizer(text, return_attention_mask=False, return_token_type_ids=False, return_tensors='pt')
|
32 |
+
embeddings = {k: v for k, v in embeddings.items()}
|
33 |
+
output = model.generate(**embeddings)[0, 1:-1]
|
34 |
+
result = trg_tokenizer.decode(output.cpu())
|
35 |
+
# print(result)
|
36 |
+
data_test_infer.append(result)
|
37 |
+
|
38 |
+
rows = zip(data_test, data_test_infer, data_test_label)
|
39 |
+
with open('test_result.csv', 'w') as f:
|
40 |
+
writer = csv.writer(f)
|
41 |
+
writer.writerow(['text', 'inference', 'answer'])
|
42 |
+
for row in rows:
|
43 |
+
writer.writerow(row)
|
44 |
+
|
45 |
+
if __name__ == "__main__":
|
46 |
+
main()
|
test_eval.ipynb
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"attachments": {},
|
5 |
+
"cell_type": "markdown",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# Inference"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": 6,
|
14 |
+
"metadata": {},
|
15 |
+
"outputs": [],
|
16 |
+
"source": [
|
17 |
+
"from transformers import(\n",
|
18 |
+
" EncoderDecoderModel,\n",
|
19 |
+
" PreTrainedTokenizerFast,\n",
|
20 |
+
" # XLMRobertaTokenizerFast,\n",
|
21 |
+
" BertJapaneseTokenizer,\n",
|
22 |
+
" BertTokenizerFast,\n",
|
23 |
+
")\n",
|
24 |
+
"\n",
|
25 |
+
"import torch\n",
|
26 |
+
"import csv"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"cell_type": "code",
|
31 |
+
"execution_count": 7,
|
32 |
+
"metadata": {},
|
33 |
+
"outputs": [
|
34 |
+
{
|
35 |
+
"name": "stderr",
|
36 |
+
"output_type": "stream",
|
37 |
+
"text": [
|
38 |
+
"The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. \n",
|
39 |
+
"The tokenizer class you load from this checkpoint is 'GPT2Tokenizer'. \n",
|
40 |
+
"The class this function is called from is 'PreTrainedTokenizerFast'.\n"
|
41 |
+
]
|
42 |
+
}
|
43 |
+
],
|
44 |
+
"source": [
|
45 |
+
"encoder_model_name = \"cl-tohoku/bert-base-japanese-v2\"\n",
|
46 |
+
"decoder_model_name = \"skt/kogpt2-base-v2\"\n",
|
47 |
+
"\n",
|
48 |
+
"src_tokenizer = BertJapaneseTokenizer.from_pretrained(encoder_model_name)\n",
|
49 |
+
"trg_tokenizer = PreTrainedTokenizerFast.from_pretrained(decoder_model_name)\n",
|
50 |
+
"model = EncoderDecoderModel.from_pretrained(\"./dump/best_model\")"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": 12,
|
56 |
+
"metadata": {},
|
57 |
+
"outputs": [
|
58 |
+
{
|
59 |
+
"data": {
|
60 |
+
"text/plain": [
|
61 |
+
"'길가메시 토벌전'"
|
62 |
+
]
|
63 |
+
},
|
64 |
+
"execution_count": 12,
|
65 |
+
"metadata": {},
|
66 |
+
"output_type": "execute_result"
|
67 |
+
}
|
68 |
+
],
|
69 |
+
"source": [
|
70 |
+
"text = \"ギルガメッシュ討伐戦\"\n",
|
71 |
+
"# text = \"ギルガメッシュ討伐戦に行ってきます。一緒に行きましょうか?\"\n",
|
72 |
+
"\n",
|
73 |
+
"def translate(text_src):\n",
|
74 |
+
" embeddings = src_tokenizer(text_src, return_attention_mask=False, return_token_type_ids=False, return_tensors='pt')\n",
|
75 |
+
" embeddings = {k: v for k, v in embeddings.items()}\n",
|
76 |
+
" output = model.generate(**embeddings)[0, 1:-1]\n",
|
77 |
+
" text_trg = trg_tokenizer.decode(output.cpu())\n",
|
78 |
+
" return text_trg\n",
|
79 |
+
"\n",
|
80 |
+
"print(translate(text))"
|
81 |
+
]
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"attachments": {},
|
85 |
+
"cell_type": "markdown",
|
86 |
+
"metadata": {},
|
87 |
+
"source": [
|
88 |
+
"# Evaluation"
|
89 |
+
]
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"cell_type": "code",
|
93 |
+
"execution_count": 4,
|
94 |
+
"metadata": {},
|
95 |
+
"outputs": [],
|
96 |
+
"source": [
|
97 |
+
"from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction\n",
|
98 |
+
"smoothie = SmoothingFunction().method4"
|
99 |
+
]
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"cell_type": "code",
|
103 |
+
"execution_count": 5,
|
104 |
+
"metadata": {},
|
105 |
+
"outputs": [
|
106 |
+
{
|
107 |
+
"name": "stderr",
|
108 |
+
"output_type": "stream",
|
109 |
+
"text": [
|
110 |
+
"Testing: 0%| | 0/267 [00:00<?, ?it/s]/home/tikim/.local/lib/python3.8/site-packages/transformers/generation/utils.py:1288: UserWarning: Using `max_length`'s default (20) to control the generation length. This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we recommend using `max_new_tokens` to control the maximum length of the generation.\n",
|
111 |
+
" warnings.warn(\n",
|
112 |
+
"Testing: 100%|██████████| 267/267 [01:01<00:00, 4.34it/s]"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"name": "stdout",
|
117 |
+
"output_type": "stream",
|
118 |
+
"text": [
|
119 |
+
"Bleu score: 0.9619225967540574\n"
|
120 |
+
]
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"name": "stderr",
|
124 |
+
"output_type": "stream",
|
125 |
+
"text": [
|
126 |
+
"\n"
|
127 |
+
]
|
128 |
+
}
|
129 |
+
],
|
130 |
+
"source": [
|
131 |
+
"from tqdm import tqdm\n",
|
132 |
+
"from statistics import mean\n",
|
133 |
+
"\n",
|
134 |
+
"bleu = []\n",
|
135 |
+
"f1 = []\n",
|
136 |
+
"\n",
|
137 |
+
"DATA_ROOT = './output'\n",
|
138 |
+
"FILE_JP_KO_TEST = 'ja_ko_test.csv'\n",
|
139 |
+
"FILE_FFAC_TEST = 'ffac_test.csv'\n",
|
140 |
+
"\n",
|
141 |
+
"with torch.no_grad(), open(f'{DATA_ROOT}/{FILE_FFAC_TEST}', 'r') as fd:\n",
|
142 |
+
"# with torch.no_grad(), open(f'{DATA_ROOT}/{FILE_JP_KO_TEST}', 'r') as fd:\n",
|
143 |
+
" reader = csv.reader(fd)\n",
|
144 |
+
" next(reader)\n",
|
145 |
+
" datas = [row for row in reader] \n",
|
146 |
+
"\n",
|
147 |
+
" for data in tqdm(datas, \"Testing\"):\n",
|
148 |
+
" input, label = data\n",
|
149 |
+
" embeddings = src_tokenizer(input, return_attention_mask=False, return_token_type_ids=False, return_tensors='pt')\n",
|
150 |
+
" embeddings = {k: v for k, v in embeddings.items()}\n",
|
151 |
+
" with torch.no_grad():\n",
|
152 |
+
" output = model.generate(**embeddings)[0, 1:-1]\n",
|
153 |
+
" preds = trg_tokenizer.decode(output.cpu())\n",
|
154 |
+
"\n",
|
155 |
+
" bleu.append(sentence_bleu([label.split()], preds.split(), weights=[1,0,0,0], smoothing_function=smoothie))\n",
|
156 |
+
"\n",
|
157 |
+
"print(f\"Bleu score: {mean(bleu)}\")"
|
158 |
+
]
|
159 |
+
}
|
160 |
+
],
|
161 |
+
"metadata": {
|
162 |
+
"kernelspec": {
|
163 |
+
"display_name": "Python 3",
|
164 |
+
"language": "python",
|
165 |
+
"name": "python3"
|
166 |
+
},
|
167 |
+
"language_info": {
|
168 |
+
"codemirror_mode": {
|
169 |
+
"name": "ipython",
|
170 |
+
"version": 3
|
171 |
+
},
|
172 |
+
"file_extension": ".py",
|
173 |
+
"mimetype": "text/x-python",
|
174 |
+
"name": "python",
|
175 |
+
"nbconvert_exporter": "python",
|
176 |
+
"pygments_lexer": "ipython3",
|
177 |
+
"version": "3.8.10"
|
178 |
+
},
|
179 |
+
"orig_nbformat": 4
|
180 |
+
},
|
181 |
+
"nbformat": 4,
|
182 |
+
"nbformat_minor": 2
|
183 |
+
}
|
training.ipynb
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"attachments": {},
|
5 |
+
"cell_type": "markdown",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"The primary codes below are based on [akpe12/JP-KR-ocr-translator-for-travel](https://github.com/akpe12/JP-KR-ocr-translator-for-travel)."
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "markdown",
|
13 |
+
"metadata": {
|
14 |
+
"id": "TrHlPFqwFAgj"
|
15 |
+
},
|
16 |
+
"source": [
|
17 |
+
"## Import"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "code",
|
22 |
+
"execution_count": null,
|
23 |
+
"metadata": {
|
24 |
+
"id": "t-jXeSJKE1WM"
|
25 |
+
},
|
26 |
+
"outputs": [],
|
27 |
+
"source": [
|
28 |
+
"\n",
|
29 |
+
"from typing import Dict, List\n",
|
30 |
+
"import csv\n",
|
31 |
+
"import torch\n",
|
32 |
+
"from transformers import (\n",
|
33 |
+
" EncoderDecoderModel,\n",
|
34 |
+
" GPT2Tokenizer as BaseGPT2Tokenizer,\n",
|
35 |
+
" PreTrainedTokenizer, BertTokenizerFast,\n",
|
36 |
+
" PreTrainedTokenizerFast,\n",
|
37 |
+
" DataCollatorForSeq2Seq,\n",
|
38 |
+
" Seq2SeqTrainingArguments,\n",
|
39 |
+
" AutoTokenizer,\n",
|
40 |
+
" XLMRobertaTokenizerFast,\n",
|
41 |
+
" BertJapaneseTokenizer,\n",
|
42 |
+
" Trainer\n",
|
43 |
+
")\n",
|
44 |
+
"from torch.utils.data import DataLoader\n",
|
45 |
+
"from transformers.models.encoder_decoder.modeling_encoder_decoder import EncoderDecoderModel\n",
|
46 |
+
"\n",
|
47 |
+
"# encoder_model_name = \"xlm-roberta-base\"\n",
|
48 |
+
"encoder_model_name = \"cl-tohoku/bert-base-japanese-v2\"\n",
|
49 |
+
"decoder_model_name = \"skt/kogpt2-base-v2\""
|
50 |
+
]
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "code",
|
54 |
+
"execution_count": null,
|
55 |
+
"metadata": {
|
56 |
+
"id": "nEW5trBtbykK"
|
57 |
+
},
|
58 |
+
"outputs": [],
|
59 |
+
"source": [
|
60 |
+
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
|
61 |
+
"# device = torch.device(\"cpu\")\n",
|
62 |
+
"device, torch.cuda.device_count()"
|
63 |
+
]
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"cell_type": "code",
|
67 |
+
"execution_count": null,
|
68 |
+
"metadata": {
|
69 |
+
"id": "5ic7pUUBFU_v"
|
70 |
+
},
|
71 |
+
"outputs": [],
|
72 |
+
"source": [
|
73 |
+
"class GPT2Tokenizer(PreTrainedTokenizerFast):\n",
|
74 |
+
" def build_inputs_with_special_tokens(self, token_ids: List[int]) -> List[int]:\n",
|
75 |
+
" return token_ids + [self.eos_token_id] \n",
|
76 |
+
"\n",
|
77 |
+
"src_tokenizer = BertJapaneseTokenizer.from_pretrained(encoder_model_name)\n",
|
78 |
+
"trg_tokenizer = GPT2Tokenizer.from_pretrained(decoder_model_name, bos_token='</s>', eos_token='</s>', unk_token='<unk>',\n",
|
79 |
+
" pad_token='<pad>', mask_token='<mask>')"
|
80 |
+
]
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"cell_type": "markdown",
|
84 |
+
"metadata": {
|
85 |
+
"id": "DTf4U1fmFQFh"
|
86 |
+
},
|
87 |
+
"source": [
|
88 |
+
"## Data"
|
89 |
+
]
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"cell_type": "code",
|
93 |
+
"execution_count": null,
|
94 |
+
"metadata": {
|
95 |
+
"id": "65L4O1c5FLKt"
|
96 |
+
},
|
97 |
+
"outputs": [],
|
98 |
+
"source": [
|
99 |
+
"class PairedDataset:\n",
|
100 |
+
" def __init__(self, \n",
|
101 |
+
" src_tokenizer: PreTrainedTokenizerFast, tgt_tokenizer: PreTrainedTokenizerFast,\n",
|
102 |
+
" file_path: str\n",
|
103 |
+
" ):\n",
|
104 |
+
" self.src_tokenizer = src_tokenizer\n",
|
105 |
+
" self.trg_tokenizer = tgt_tokenizer\n",
|
106 |
+
" with open(file_path, 'r') as fd:\n",
|
107 |
+
" reader = csv.reader(fd)\n",
|
108 |
+
" next(reader)\n",
|
109 |
+
" self.data = [row for row in reader]\n",
|
110 |
+
"\n",
|
111 |
+
" def __getitem__(self, index: int) -> Dict[str, torch.Tensor]:\n",
|
112 |
+
" src, trg = self.data[index]\n",
|
113 |
+
" embeddings = self.src_tokenizer(src, return_attention_mask=False, return_token_type_ids=False)\n",
|
114 |
+
" embeddings['labels'] = self.trg_tokenizer.build_inputs_with_special_tokens(self.trg_tokenizer(trg, return_attention_mask=False)['input_ids'])\n",
|
115 |
+
"\n",
|
116 |
+
" return embeddings\n",
|
117 |
+
"\n",
|
118 |
+
" def __len__(self):\n",
|
119 |
+
" return len(self.data)\n",
|
120 |
+
" \n",
|
121 |
+
"DATA_ROOT = './output'\n",
|
122 |
+
"FILE_FFAC_FULL = 'ffac_full.csv'\n",
|
123 |
+
"FILE_FFAC_TEST = 'ffac_test.csv'\n",
|
124 |
+
"# FILE_JA_KO_TRAIN = 'ja_ko_train.csv'\n",
|
125 |
+
"# FILE_JA_KO_TEST = 'ja_ko_test.csv'\n",
|
126 |
+
"\n",
|
127 |
+
"train_dataset = PairedDataset(src_tokenizer, trg_tokenizer, f'{DATA_ROOT}/{FILE_FFAC_FULL}')\n",
|
128 |
+
"eval_dataset = PairedDataset(src_tokenizer, trg_tokenizer, f'{DATA_ROOT}/{FILE_FFAC_TEST}') \n",
|
129 |
+
"# train_dataset = PairedDataset(src_tokenizer, trg_tokenizer, f'{DATA_ROOT}/{FILE_JA_KO_TRAIN}')\n",
|
130 |
+
"# eval_dataset = PairedDataset(src_tokenizer, trg_tokenizer, f'{DATA_ROOT}/{FILE_JA_KO_TEST}') "
|
131 |
+
]
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"cell_type": "markdown",
|
135 |
+
"metadata": {
|
136 |
+
"id": "uCBiLouSFiZY"
|
137 |
+
},
|
138 |
+
"source": [
|
139 |
+
"## Model"
|
140 |
+
]
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"cell_type": "code",
|
144 |
+
"execution_count": null,
|
145 |
+
"metadata": {
|
146 |
+
"id": "I7uFbFYJFje8"
|
147 |
+
},
|
148 |
+
"outputs": [],
|
149 |
+
"source": [
|
150 |
+
"model = EncoderDecoderModel.from_encoder_decoder_pretrained(\n",
|
151 |
+
" encoder_model_name,\n",
|
152 |
+
" decoder_model_name,\n",
|
153 |
+
" pad_token_id=trg_tokenizer.bos_token_id,\n",
|
154 |
+
")\n",
|
155 |
+
"model.config.decoder_start_token_id = trg_tokenizer.bos_token_id"
|
156 |
+
]
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"cell_type": "code",
|
160 |
+
"execution_count": null,
|
161 |
+
"metadata": {
|
162 |
+
"id": "YFq2GyOAUV0W"
|
163 |
+
},
|
164 |
+
"outputs": [],
|
165 |
+
"source": [
|
166 |
+
"# for Trainer\n",
|
167 |
+
"import wandb\n",
|
168 |
+
"\n",
|
169 |
+
"collate_fn = DataCollatorForSeq2Seq(src_tokenizer, model)\n",
|
170 |
+
"wandb.init(project=\"fftr-poc1\", name='jbert+kogpt2')\n",
|
171 |
+
"\n",
|
172 |
+
"arguments = Seq2SeqTrainingArguments(\n",
|
173 |
+
" output_dir='dump',\n",
|
174 |
+
" do_train=True,\n",
|
175 |
+
" do_eval=True,\n",
|
176 |
+
" evaluation_strategy=\"epoch\",\n",
|
177 |
+
" save_strategy=\"epoch\",\n",
|
178 |
+
"# num_train_epochs=5,\n",
|
179 |
+
" num_train_epochs=25,\n",
|
180 |
+
"# per_device_train_batch_size=32,\n",
|
181 |
+
" per_device_train_batch_size=64,\n",
|
182 |
+
"# per_device_eval_batch_size=32,\n",
|
183 |
+
" per_device_eval_batch_size=64,\n",
|
184 |
+
" warmup_ratio=0.1,\n",
|
185 |
+
" gradient_accumulation_steps=4,\n",
|
186 |
+
" save_total_limit=5,\n",
|
187 |
+
" dataloader_num_workers=1,\n",
|
188 |
+
" fp16=True,\n",
|
189 |
+
" load_best_model_at_end=True,\n",
|
190 |
+
" report_to='wandb'\n",
|
191 |
+
")\n",
|
192 |
+
"\n",
|
193 |
+
"trainer = Trainer(\n",
|
194 |
+
" model,\n",
|
195 |
+
" arguments,\n",
|
196 |
+
" data_collator=collate_fn,\n",
|
197 |
+
" train_dataset=train_dataset,\n",
|
198 |
+
" eval_dataset=eval_dataset\n",
|
199 |
+
")"
|
200 |
+
]
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"cell_type": "markdown",
|
204 |
+
"metadata": {
|
205 |
+
"id": "pPsjDHO5Vc3y"
|
206 |
+
},
|
207 |
+
"source": [
|
208 |
+
"## Training"
|
209 |
+
]
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"cell_type": "code",
|
213 |
+
"execution_count": null,
|
214 |
+
"metadata": {
|
215 |
+
"id": "_T4P4XunmK-C"
|
216 |
+
},
|
217 |
+
"outputs": [],
|
218 |
+
"source": [
|
219 |
+
"# model = EncoderDecoderModel.from_encoder_decoder_pretrained(\"xlm-roberta-base\", \"skt/kogpt2-base-v2\")"
|
220 |
+
]
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"cell_type": "code",
|
224 |
+
"execution_count": null,
|
225 |
+
"metadata": {
|
226 |
+
"id": "7vTqAgW6Ve3J"
|
227 |
+
},
|
228 |
+
"outputs": [],
|
229 |
+
"source": [
|
230 |
+
"trainer.train()\n",
|
231 |
+
"\n",
|
232 |
+
"model.save_pretrained(\"dump/best_model\")"
|
233 |
+
]
|
234 |
+
}
|
235 |
+
],
|
236 |
+
"metadata": {
|
237 |
+
"colab": {
|
238 |
+
"machine_shape": "hm",
|
239 |
+
"provenance": []
|
240 |
+
},
|
241 |
+
"gpuClass": "premium",
|
242 |
+
"kernelspec": {
|
243 |
+
"display_name": "Python 3",
|
244 |
+
"name": "python3"
|
245 |
+
},
|
246 |
+
"language_info": {
|
247 |
+
"codemirror_mode": {
|
248 |
+
"name": "ipython",
|
249 |
+
"version": 3
|
250 |
+
},
|
251 |
+
"file_extension": ".py",
|
252 |
+
"mimetype": "text/x-python",
|
253 |
+
"name": "python",
|
254 |
+
"nbconvert_exporter": "python",
|
255 |
+
"pygments_lexer": "ipython3",
|
256 |
+
"version": "3.8.10"
|
257 |
+
}
|
258 |
+
},
|
259 |
+
"nbformat": 4,
|
260 |
+
"nbformat_minor": 0
|
261 |
+
}
|