saribalgar commited on
Commit
4734f8e
·
1 Parent(s): 3c7b3d3

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - wer
7
+ model-index:
8
+ - name: wav2vec2-base-timit-ms
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-base-timit-ms
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.7589
20
+ - Wer: 0.3722
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0001
40
+ - train_batch_size: 8
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 1000
46
+ - num_epochs: 80
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
52
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
53
+ | 4.0088 | 3.7 | 500 | 2.4873 | 1.0 |
54
+ | 1.0451 | 7.41 | 1000 | 0.9286 | 0.5470 |
55
+ | 0.4081 | 11.11 | 1500 | 0.5935 | 0.4397 |
56
+ | 0.2564 | 14.81 | 2000 | 0.6525 | 0.4292 |
57
+ | 0.183 | 18.52 | 2500 | 0.6578 | 0.4486 |
58
+ | 0.1481 | 22.22 | 3000 | 0.6786 | 0.4231 |
59
+ | 0.1299 | 25.93 | 3500 | 0.6660 | 0.4121 |
60
+ | 0.1044 | 29.63 | 4000 | 0.7713 | 0.4209 |
61
+ | 0.0953 | 33.33 | 4500 | 0.6728 | 0.4038 |
62
+ | 0.0746 | 37.04 | 5000 | 0.7122 | 0.4165 |
63
+ | 0.0627 | 40.74 | 5500 | 0.6950 | 0.4126 |
64
+ | 0.0554 | 44.44 | 6000 | 0.8237 | 0.4082 |
65
+ | 0.0494 | 48.15 | 6500 | 0.7311 | 0.3955 |
66
+ | 0.0426 | 51.85 | 7000 | 0.7717 | 0.3899 |
67
+ | 0.0368 | 55.56 | 7500 | 0.7490 | 0.3933 |
68
+ | 0.0315 | 59.26 | 8000 | 0.7056 | 0.3877 |
69
+ | 0.0274 | 62.96 | 8500 | 0.7897 | 0.3850 |
70
+ | 0.0237 | 66.67 | 9000 | 0.7715 | 0.3850 |
71
+ | 0.0223 | 70.37 | 9500 | 0.7774 | 0.3789 |
72
+ | 0.0177 | 74.07 | 10000 | 0.7598 | 0.3744 |
73
+ | 0.0182 | 77.78 | 10500 | 0.7589 | 0.3722 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.24.0
79
+ - Pytorch 2.0.0+cu118
80
+ - Datasets 1.18.3
81
+ - Tokenizers 0.13.3