--- library_name: transformers language: - hu base_model: openai/whisper-base tags: - generated_from_trainer datasets: - fleurs metrics: - wer model-index: - name: Whisper Base Hungarian v1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs type: fleurs config: hu_hu split: test args: hu_hu metrics: - name: Wer type: wer value: 29.48142356294297 --- A kezdeti próbálkozásokat mind eltávolítottam, ez a jelenleg rendelkezésre álló eszközök és technológia által létrehozható legjobb magyar nyelvere finomhangolt whisper base modell. A többi magyar nyelvre finomhangolt base modelltől nagyságrendellek jobb eredményeket ér el minden adatkészleten! # Whisper Base Hungarian Ez a modell a finomhangolt változata a [openai/whisper-base](https://huggingface.co/openai/whisper-base) -nek sarpba/big_audio_data_hun adatkészleten. Teszteredmények: ("google/fleurs", "hu_hu", "test") (képzés közbeni) - Loss: 0.7999 - Wer Ortho: 33.8788 - Wer: 29.4814 ("mozilla-foundation/common_voice_17_0", "hu", "test") - WER: 25.58 - CER: 6.34 - Normalised WER: 21.18 - Normalised CER: 5.31 ## Model description Egyedi adatkészleten magyarta finomhangolt whisper base modell. ## Intended uses & limitations Üzleti cálra a modell a hozzájárulásom nélkül nem használható! Magán célra szabadon felhasználható a whisper esedeti licenszfeltételei szerint! Commercial use of this fine-tuning is not permitted! ## Training and evaluation data A modell hozzávetőleg 1200 óra gondosan válogatott magyar hanganyag alapján készült. A képzés során a tesztek a google/flerus-t használták a fejlődés ellenőrzésére. Alatta a mozilla-foundation/common_voice_17_0 eredménye. Egyik adatkészlet sem szerepelt a képzési adatok közt, a modell tesztanyaggal nem fertőzött! ## Training procedure A képzés optimalizációja 3 napig futott a ray[tune] segítségével, a megtalált optimális képzési paraméterekkel a finomhangolás hozzávetőleg 17 órába telt! ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:-------:| | 0.2523 | 0.3770 | 1000 | 0.9703 | 50.8988 | 46.7185 | | 0.1859 | 0.7539 | 2000 | 0.8605 | 43.4345 | 39.4103 | | 0.127 | 1.1309 | 3000 | 0.8378 | 40.6107 | 36.0040 | | 0.1226 | 1.5079 | 4000 | 0.8153 | 38.9189 | 34.1842 | | 0.1105 | 1.8848 | 5000 | 0.7847 | 36.6018 | 32.1979 | | 0.0659 | 2.2618 | 6000 | 0.8298 | 35.3752 | 30.6379 | | 0.0594 | 2.6388 | 7000 | 0.8132 | 34.8255 | 30.2280 | | 0.0316 | 3.0157 | 8000 | 0.7999 | 33.8788 | 29.4814 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.0+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1 ### Köszönet nyílvánítás Itt szeretném megköszönni mindazoknak, akik mind anyagilag, mind a munkájukkal hozzájárultak a model létrejöttéhez. Jaa bocs az egy másik sztori, ebben nem segített senki. A közel 1 éves tanulási folyamat és ennek a modelnek a létrehozása (hozzávetőleg 2 hónap) szinte az öszes szabadidőmet felemésztette. Persze tanulni mindíg jó! A hardverek és a villanyszámla mire ide jutottunk cca 1 millió forint körül lehetnek, mégis ingyen adom a köz javára. Legalább annyit tegyetek meg, hogy nem rúgtok belém. Köszi!