Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,157 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
|
20 |
-
- **Developed by:** [
|
21 |
-
- **
|
22 |
-
- **
|
23 |
-
- **
|
24 |
-
- **
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
### Model Sources
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
-
|
79 |
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
[More Information Needed]
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
|
93 |
-
#### Training
|
94 |
|
95 |
-
|
96 |
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
|
195 |
-
|
196 |
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
-
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- bert
|
5 |
+
- ner
|
6 |
+
license: apache-2.0
|
7 |
+
datasets:
|
8 |
+
- eriktks/conll2003
|
9 |
+
base_model:
|
10 |
+
- google-bert/bert-base-uncased
|
11 |
+
pipeline_tag: token-classification
|
12 |
+
language:
|
13 |
+
- en
|
14 |
+
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
type: token-classification
|
18 |
+
name: Token Classification
|
19 |
+
dataset:
|
20 |
+
name: conll2003
|
21 |
+
type: conll2003
|
22 |
+
config: conll2003
|
23 |
+
split: test
|
24 |
+
metrics:
|
25 |
+
- name: Precision
|
26 |
+
type: precision
|
27 |
+
value: 0.8992
|
28 |
+
verified: true
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 0.9115
|
32 |
+
verified: true
|
33 |
+
- name: F1
|
34 |
+
type: f1
|
35 |
+
value: 0.0.9053
|
36 |
+
verified: true
|
37 |
+
- name: loss
|
38 |
+
type: loss
|
39 |
+
value: 0.040937
|
40 |
+
verified: true
|
41 |
---
|
42 |
|
43 |
+
# Model Card for Bert Named Entity Recognition
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
### Model Description
|
46 |
|
47 |
+
This is a chat fine-tuned version of `google-bert/bert-base-uncased`, designed to perform Named Entity Recognition on a text sentence imput.
|
|
|
|
|
48 |
|
49 |
+
- **Developed by:** [Sartaj](https://huggingface.co/sartajbhuvaji)
|
50 |
+
- **Finetuned from model:** `google-bert/bert-base-uncased`
|
51 |
+
- **Language(s):** English
|
52 |
+
- **License:** apache-2.0
|
53 |
+
- **Framework:** Hugging Face Transformers
|
|
|
|
|
54 |
|
55 |
+
### Model Sources
|
56 |
|
57 |
+
- **Repository:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased)
|
58 |
+
- **Paper:** [BERT-paper](https://huggingface.co/papers/1810.04805)
|
|
|
|
|
|
|
59 |
|
60 |
## Uses
|
61 |
|
62 |
+
Model can be used to recognize Named Entities in text.
|
63 |
+
|
64 |
+
## Usage
|
65 |
+
|
66 |
+
```python
|
67 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
68 |
+
from transformers import pipeline
|
69 |
+
|
70 |
+
tokenizer = AutoTokenizer.from_pretrained("sartajbhuvaji/bert-named-entity-recognition")
|
71 |
+
model = AutoModelForTokenClassification.from_pretrained("sartajbhuvaji/bert-named-entity-recognition")
|
72 |
+
|
73 |
+
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
|
74 |
+
example = "My name is Wolfgang and I live in Berlin"
|
75 |
+
|
76 |
+
ner_results = nlp(example)
|
77 |
+
print(ner_results)
|
78 |
+
|
79 |
+
```
|
80 |
+
|
81 |
+
```json
|
82 |
+
[
|
83 |
+
{
|
84 |
+
"end": 19,
|
85 |
+
"entity": "B-PER",
|
86 |
+
"index": 4,
|
87 |
+
"score": 0.99633455,
|
88 |
+
"start": 11,
|
89 |
+
"word": "wolfgang"
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"end": 40,
|
93 |
+
"entity": "B-LOC",
|
94 |
+
"index": 9,
|
95 |
+
"score": 0.9987465,
|
96 |
+
"start": 34,
|
97 |
+
"word": "berlin"
|
98 |
+
}
|
99 |
+
]
|
100 |
+
```
|
101 |
|
102 |
## Training Details
|
103 |
|
104 |
+
- **Dataset** : [eriktks/conll2003](https://huggingface.co/datasets/eriktks/conll2003)
|
105 |
|
106 |
+
| Abbreviation | Description |
|
107 |
+
|---|---|
|
108 |
+
| O | Outside of a named entity |
|
109 |
+
| B-MISC | Beginning of a miscellaneous entity right after another miscellaneous entity |
|
110 |
+
| I-MISC | Miscellaneous entity |
|
111 |
+
| B-PER | Beginning of a person's name right after another person's name |
|
112 |
+
| I-PER | Person's name |
|
113 |
+
| B-ORG | Beginning of an organization right after another organization |
|
114 |
+
| I-ORG | Organization |
|
115 |
+
| B-LOC | Beginning of a location right after another location |
|
116 |
+
| I-LOC | Location |
|
117 |
|
|
|
118 |
|
119 |
### Training Procedure
|
120 |
|
121 |
+
- Full Model Finetune
|
122 |
+
- Epochs : 5
|
|
|
|
|
|
|
|
|
123 |
|
124 |
+
#### Training Loss Curves
|
125 |
|
126 |
+

|
127 |
|
|
|
128 |
|
129 |
+
## Trainer
|
130 |
+
- global_step: 4390
|
131 |
+
- training_loss: 0.040937909830132485
|
132 |
+
- train_runtime: 206.3611
|
133 |
+
- train_samples_per_second: 340.205
|
134 |
+
- train_steps_per_second: 21.273
|
135 |
+
- total_flos: 1702317283240608.0
|
136 |
+
- train_loss: 0.040937909830132485
|
137 |
+
- epoch: 5.0
|
138 |
|
139 |
## Evaluation
|
140 |
|
141 |
+
- Precision: 0.8992
|
142 |
+
- Recall: 0.9115
|
143 |
+
- F1 Score: 0.9053
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
+
### Classification Report
|
146 |
|
147 |
+
| Class | Precision | Recall | F1-Score | Support |
|
148 |
+
|---|---|---|---|---|
|
149 |
+
| LOC | 0.91 | 0.93 | 0.92 | 1668 |
|
150 |
+
| MISC | 0.76 | 0.81 | 0.78 | 702 |
|
151 |
+
| ORG | 0.87 | 0.88 | 0.88 | 1661 |
|
152 |
+
| PER | 0.98 | 0.97 | 0.97 | 1617 |
|
153 |
+
| **Micro Avg** | 0.90 | 0.91 | 0.91 | 5648 |
|
154 |
+
| **Macro Avg** | 0.88 | 0.90 | 0.89 | 5648 |
|
155 |
+
| **Weighted Avg** | 0.90 | 0.91 | 0.91 | 5648 |
|
156 |
|
157 |
+
- Evaluation Dataset : eriktks/conll2003
|