sartajbhuvaji commited on
Commit
04a446e
·
verified ·
1 Parent(s): b33feb0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +126 -168
README.md CHANGED
@@ -1,199 +1,157 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
 
 
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
 
 
 
 
 
 
 
 
 
81
 
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
 
 
 
 
 
 
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
 
 
 
 
 
 
 
 
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - bert
5
+ - ner
6
+ license: apache-2.0
7
+ datasets:
8
+ - eriktks/conll2003
9
+ base_model:
10
+ - google-bert/bert-base-uncased
11
+ pipeline_tag: token-classification
12
+ language:
13
+ - en
14
+
15
+ results:
16
+ - task:
17
+ type: token-classification
18
+ name: Token Classification
19
+ dataset:
20
+ name: conll2003
21
+ type: conll2003
22
+ config: conll2003
23
+ split: test
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.8992
28
+ verified: true
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.9115
32
+ verified: true
33
+ - name: F1
34
+ type: f1
35
+ value: 0.0.9053
36
+ verified: true
37
+ - name: loss
38
+ type: loss
39
+ value: 0.040937
40
+ verified: true
41
  ---
42
 
43
+ # Model Card for Bert Named Entity Recognition
 
 
 
 
 
 
44
 
45
  ### Model Description
46
 
47
+ This is a chat fine-tuned version of `google-bert/bert-base-uncased`, designed to perform Named Entity Recognition on a text sentence imput.
 
 
48
 
49
+ - **Developed by:** [Sartaj](https://huggingface.co/sartajbhuvaji)
50
+ - **Finetuned from model:** `google-bert/bert-base-uncased`
51
+ - **Language(s):** English
52
+ - **License:** apache-2.0
53
+ - **Framework:** Hugging Face Transformers
 
 
54
 
55
+ ### Model Sources
56
 
57
+ - **Repository:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased)
58
+ - **Paper:** [BERT-paper](https://huggingface.co/papers/1810.04805)
 
 
 
59
 
60
  ## Uses
61
 
62
+ Model can be used to recognize Named Entities in text.
63
+
64
+ ## Usage
65
+
66
+ ```python
67
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
68
+ from transformers import pipeline
69
+
70
+ tokenizer = AutoTokenizer.from_pretrained("sartajbhuvaji/bert-named-entity-recognition")
71
+ model = AutoModelForTokenClassification.from_pretrained("sartajbhuvaji/bert-named-entity-recognition")
72
+
73
+ nlp = pipeline("ner", model=model, tokenizer=tokenizer)
74
+ example = "My name is Wolfgang and I live in Berlin"
75
+
76
+ ner_results = nlp(example)
77
+ print(ner_results)
78
+
79
+ ```
80
+
81
+ ```json
82
+ [
83
+ {
84
+ "end": 19,
85
+ "entity": "B-PER",
86
+ "index": 4,
87
+ "score": 0.99633455,
88
+ "start": 11,
89
+ "word": "wolfgang"
90
+ },
91
+ {
92
+ "end": 40,
93
+ "entity": "B-LOC",
94
+ "index": 9,
95
+ "score": 0.9987465,
96
+ "start": 34,
97
+ "word": "berlin"
98
+ }
99
+ ]
100
+ ```
101
 
102
  ## Training Details
103
 
104
+ - **Dataset** : [eriktks/conll2003](https://huggingface.co/datasets/eriktks/conll2003)
105
 
106
+ | Abbreviation | Description |
107
+ |---|---|
108
+ | O | Outside of a named entity |
109
+ | B-MISC | Beginning of a miscellaneous entity right after another miscellaneous entity |
110
+ | I-MISC | Miscellaneous entity |
111
+ | B-PER | Beginning of a person's name right after another person's name |
112
+ | I-PER | Person's name |
113
+ | B-ORG | Beginning of an organization right after another organization |
114
+ | I-ORG | Organization |
115
+ | B-LOC | Beginning of a location right after another location |
116
+ | I-LOC | Location |
117
 
 
118
 
119
  ### Training Procedure
120
 
121
+ - Full Model Finetune
122
+ - Epochs : 5
 
 
 
 
123
 
124
+ #### Training Loss Curves
125
 
126
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6354695712edd0ed5dc46b04/vVra4giLk3EPjXo48Sbax.png)
127
 
 
128
 
129
+ ## Trainer
130
+ - global_step: 4390
131
+ - training_loss: 0.040937909830132485
132
+ - train_runtime: 206.3611
133
+ - train_samples_per_second: 340.205
134
+ - train_steps_per_second: 21.273
135
+ - total_flos: 1702317283240608.0
136
+ - train_loss: 0.040937909830132485
137
+ - epoch: 5.0
138
 
139
  ## Evaluation
140
 
141
+ - Precision: 0.8992
142
+ - Recall: 0.9115
143
+ - F1 Score: 0.9053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144
 
145
+ ### Classification Report
146
 
147
+ | Class | Precision | Recall | F1-Score | Support |
148
+ |---|---|---|---|---|
149
+ | LOC | 0.91 | 0.93 | 0.92 | 1668 |
150
+ | MISC | 0.76 | 0.81 | 0.78 | 702 |
151
+ | ORG | 0.87 | 0.88 | 0.88 | 1661 |
152
+ | PER | 0.98 | 0.97 | 0.97 | 1617 |
153
+ | **Micro Avg** | 0.90 | 0.91 | 0.91 | 5648 |
154
+ | **Macro Avg** | 0.88 | 0.90 | 0.89 | 5648 |
155
+ | **Weighted Avg** | 0.90 | 0.91 | 0.91 | 5648 |
156
 
157
+ - Evaluation Dataset : eriktks/conll2003