--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** satoyutaka - **License:** apache-2.0 - **Finetuned from model :** llm-jp/llm-jp-3-13b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) # sample of use(python) from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) ## モデルのロード import torch from tqdm import tqdm import json HF_TOKEN = "Hugging Face Token" #Hugging Face のAPIキーを入力(read) model_name = "satoyutaka/llm-jp-3-13b-ftELZ-2" #作成したモデル名 ## 量子化パラメータの設定 bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=False, ) ## 問題文の読み込み datasets = [] with open("elyza-tasks-100-TV_0.jsonl", "r") as f: #ファイルを格納したパスに書き換えてください。 item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" results = [] ## 推論 from tqdm import tqdm results = [] for dt in tqdm(datasets): input = dt["input"] prompt = f"""### 指示\n{input}\n### 回答\n""" inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) ## 提出ファイルの作成 import re model_name = re.sub(".*/", "", model_name) with open(f"./{model_name}-outputs.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters f.write('\n')