--- base_model: microsoft/Phi-3-mini-4k-instruct library_name: peft license: mit tags: - trl - sft - generated_from_trainer model-index: - name: hf_llama3_lora results: [] --- [Visualize in Weights & Biases](https://wandb.ai/hmosousa/huggingface/runs/d375v2e7) # hf_llama3_lora This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 5 - gradient_accumulation_steps: 32 - total_train_batch_size: 640 - total_eval_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4042 | 0.1862 | 500 | 1.3990 | | 1.3445 | 0.3723 | 1000 | 1.3608 | | 1.291 | 0.5585 | 1500 | 1.3493 | | 1.264 | 0.7446 | 2000 | 1.3381 | | 1.2438 | 0.9308 | 2500 | 1.3257 | | 1.2333 | 1.1169 | 3000 | 1.3242 | | 1.2084 | 1.3031 | 3500 | 1.3167 | | 1.2227 | 1.4892 | 4000 | 1.3178 | | 1.2151 | 1.6754 | 4500 | 1.3092 | | 1.2114 | 1.8615 | 5000 | 1.3060 | | 1.1645 | 2.0477 | 5500 | 1.3068 | | 1.1793 | 2.2338 | 6000 | 1.3026 | | 1.1809 | 2.4200 | 6500 | 1.3014 | | 1.1934 | 2.6061 | 7000 | 1.2935 | | 1.175 | 2.7923 | 7500 | 1.2953 | | 1.1629 | 2.9784 | 8000 | 1.2954 | | 1.1559 | 3.1646 | 8500 | 1.2972 | ### Framework versions - PEFT 0.9.0 - Transformers 4.43.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1