File size: 1,678 Bytes
c1f6724
 
 
 
3f2e60c
 
 
c1f6724
 
3e38ab5
c1f6724
 
 
 
 
 
 
 
 
 
 
 
e3ebcb5
 
c1f6724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5820f5f
c1f6724
 
 
 
 
e3ebcb5
 
 
 
c1f6724
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
- video-classification
- videomae
- vision
metrics:
- accuracy
base_model: MCG-NJU/videomae-base
model-index:
- name: videomae-base-finetuned-ucf101-subset
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-finetuned-ucf101-subset

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3992
- Accuracy: 0.8645

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 148

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.1374        | 0.26  | 38   | 1.7413          | 0.5714   |
| 0.7949        | 1.26  | 76   | 0.7747          | 0.8      |
| 0.4279        | 2.26  | 114  | 0.4053          | 0.9143   |
| 0.291         | 3.23  | 148  | 0.3429          | 0.9286   |


### Framework versions

- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.2