Update README.md
Browse files
README.md
CHANGED
@@ -2,27 +2,23 @@
|
|
2 |
|
3 |
Implemented by [sayef](https://huggingface.co/sayef).
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
The FSNER model was proposed in [Example-Based Named Entity Recognition](https://arxiv.org/abs/2008.10570) by Morteza Ziyadi, Yuting Sun, Abhishek Goswami, Jade Huang, Weizhu Chen. To identify entity spans in a new domain, it uses a train-free few-shot learning approach inspired by question-answering.
|
8 |
-
|
9 |
|
|
|
|
|
|
|
10 |
|
11 |
## Abstract
|
12 |
-
----
|
13 |
-
> We present a novel approach to named entity recognition (NER) in the presence of scarce data that we call example-based NER. Our train-free few-shot learning approach takes inspiration from question-answering to identify entity spans in a new and unseen domain. In comparison with the current state-of-the-art, the proposed method performs significantly better, especially when using a low number of support examples.
|
14 |
-
|
15 |
|
|
|
16 |
|
17 |
## Model Training Details
|
18 |
-
-----
|
19 |
|
20 |
| identifier | epochs | datasets |
|
21 |
| ---------- |:------:|:-----------------------------------------------------------------------------------------------:|
|
22 |
| [sayef/fsner-bert-base-uncased](https://huggingface.co/sayef/fsner-bert-base-uncased) | 25 | ontonotes5, conll2003, wnut2017, mit_movie_trivia, mit_restaurant and fin (Alvarado et al.). |
|
23 |
|
24 |
## Installation and Example Usage
|
25 |
-
------
|
26 |
|
27 |
You can use the FSNER model in 3 ways:
|
28 |
|
@@ -30,18 +26,18 @@ You can use the FSNER model in 3 ways:
|
|
30 |
|
31 |
or
|
32 |
|
33 |
-
2. Install from source: `python
|
34 |
|
35 |
or
|
36 |
|
37 |
-
3. Clone [repo](https://github.com/sayef/fsner) and add absolute path of `fsner/src` directory to your PYTHONPATH and
|
|
|
38 |
|
39 |
```python
|
40 |
import json
|
41 |
|
42 |
from fsner import FSNERModel, FSNERTokenizerUtils, pretty_embed
|
43 |
|
44 |
-
|
45 |
query_texts = [
|
46 |
"Does Luke's serve lunch?",
|
47 |
"Chang does not speak Taiwanese very well.",
|
@@ -73,7 +69,6 @@ support_texts = {
|
|
73 |
|
74 |
device = 'cpu'
|
75 |
|
76 |
-
|
77 |
tokenizer = FSNERTokenizerUtils("sayef/fsner-bert-base-uncased")
|
78 |
queries = tokenizer.tokenize(query_texts).to(device)
|
79 |
supports = tokenizer.tokenize(list(support_texts.values())).to(device)
|
@@ -94,11 +89,10 @@ output = tokenizer.extract_entity_from_scores(query_texts, queries, p_starts, p_
|
|
94 |
|
95 |
print(json.dumps(output, indent=2))
|
96 |
|
97 |
-
# install
|
98 |
pretty_embed(query_texts, output, list(support_texts.keys()))
|
99 |
```
|
100 |
|
101 |
-
|
102 |
<!DOCTYPE html>
|
103 |
<html lang="en">
|
104 |
<head>
|
@@ -126,10 +120,12 @@ pretty_embed(query_texts, output, list(support_texts.keys()))
|
|
126 |
</body>
|
127 |
</html>
|
128 |
|
129 |
-
|
130 |
## Datasets preparation
|
131 |
|
132 |
1. We need to convert dataset into the following format. Let's say we have a dataset file train.json like following.
|
|
|
|
|
|
|
133 |
|
134 |
```json
|
135 |
{
|
@@ -158,10 +154,10 @@ pretty_embed(query_texts, output, list(support_texts.keys()))
|
|
158 |
1. [train](https://gist.githubusercontent.com/sayef/46deaf7e6c6e1410b430ddc8aff9c557/raw/ea7ae2ae933bfc9c0daac1aa52a9dc093d5b36f4/ontonotes5.train.json)
|
159 |
2. [dev](https://gist.githubusercontent.com/sayef/46deaf7e6c6e1410b430ddc8aff9c557/raw/ea7ae2ae933bfc9c0daac1aa52a9dc093d5b36f4/ontonotes5.dev.json)
|
160 |
|
161 |
-
3. Then
|
162 |
|
163 |
```bash
|
164 |
-
|
165 |
--train-batch-size 6 --val-batch-size 6 --n-examples-per-entity 10 --neg-example-batch-ratio 1/3 --max-epochs 25 --device gpu \
|
166 |
--gpus -1 --strategy ddp
|
167 |
```
|
|
|
2 |
|
3 |
Implemented by [sayef](https://huggingface.co/sayef).
|
4 |
|
5 |
+
# Overview
|
|
|
|
|
|
|
6 |
|
7 |
+
The FSNER model was proposed in [Example-Based Named Entity Recognition](https://arxiv.org/abs/2008.10570) by Morteza
|
8 |
+
Ziyadi, Yuting Sun, Abhishek Goswami, Jade Huang, Weizhu Chen. To identify entity spans in a new domain, it uses a
|
9 |
+
train-free few-shot learning approach inspired by question-answering.
|
10 |
|
11 |
## Abstract
|
|
|
|
|
|
|
12 |
|
13 |
+
> We present a novel approach to named entity recognition (NER) in the presence of scarce data that we call example-based NER. Our train-free few-shot learning approach takes inspiration from question-answering to identify entity spans in a new and unseen domain. In comparison with the current state-of-the-art, the proposed method performs significantly better, especially when using a low number of support examples.
|
14 |
|
15 |
## Model Training Details
|
|
|
16 |
|
17 |
| identifier | epochs | datasets |
|
18 |
| ---------- |:------:|:-----------------------------------------------------------------------------------------------:|
|
19 |
| [sayef/fsner-bert-base-uncased](https://huggingface.co/sayef/fsner-bert-base-uncased) | 25 | ontonotes5, conll2003, wnut2017, mit_movie_trivia, mit_restaurant and fin (Alvarado et al.). |
|
20 |
|
21 |
## Installation and Example Usage
|
|
|
22 |
|
23 |
You can use the FSNER model in 3 ways:
|
24 |
|
|
|
26 |
|
27 |
or
|
28 |
|
29 |
+
2. Install from source: `python install .` and import the model as shown in the code example below
|
30 |
|
31 |
or
|
32 |
|
33 |
+
3. Clone [repo](https://github.com/sayef/fsner) and add absolute path of `fsner/src` directory to your PYTHONPATH and
|
34 |
+
import the model as shown in the code example below
|
35 |
|
36 |
```python
|
37 |
import json
|
38 |
|
39 |
from fsner import FSNERModel, FSNERTokenizerUtils, pretty_embed
|
40 |
|
|
|
41 |
query_texts = [
|
42 |
"Does Luke's serve lunch?",
|
43 |
"Chang does not speak Taiwanese very well.",
|
|
|
69 |
|
70 |
device = 'cpu'
|
71 |
|
|
|
72 |
tokenizer = FSNERTokenizerUtils("sayef/fsner-bert-base-uncased")
|
73 |
queries = tokenizer.tokenize(query_texts).to(device)
|
74 |
supports = tokenizer.tokenize(list(support_texts.values())).to(device)
|
|
|
89 |
|
90 |
print(json.dumps(output, indent=2))
|
91 |
|
92 |
+
# install displacy for pretty embed
|
93 |
pretty_embed(query_texts, output, list(support_texts.keys()))
|
94 |
```
|
95 |
|
|
|
96 |
<!DOCTYPE html>
|
97 |
<html lang="en">
|
98 |
<head>
|
|
|
120 |
</body>
|
121 |
</html>
|
122 |
|
|
|
123 |
## Datasets preparation
|
124 |
|
125 |
1. We need to convert dataset into the following format. Let's say we have a dataset file train.json like following.
|
126 |
+
2. Each list in supports are the examples of one entity type
|
127 |
+
3. Wrap entities around with [E] and [/E] in the examples.
|
128 |
+
4. Each example should have only one pair of [E] ... [/E].
|
129 |
|
130 |
```json
|
131 |
{
|
|
|
154 |
1. [train](https://gist.githubusercontent.com/sayef/46deaf7e6c6e1410b430ddc8aff9c557/raw/ea7ae2ae933bfc9c0daac1aa52a9dc093d5b36f4/ontonotes5.train.json)
|
155 |
2. [dev](https://gist.githubusercontent.com/sayef/46deaf7e6c6e1410b430ddc8aff9c557/raw/ea7ae2ae933bfc9c0daac1aa52a9dc093d5b36f4/ontonotes5.dev.json)
|
156 |
|
157 |
+
3. Then trainer script can be used to train/evaluate your fsner model.
|
158 |
|
159 |
```bash
|
160 |
+
fsner trainer --pretrained-model bert-base-uncased --mode train --train-data train.json --val-data val.json \
|
161 |
--train-batch-size 6 --val-batch-size 6 --n-examples-per-entity 10 --neg-example-batch-ratio 1/3 --max-epochs 25 --device gpu \
|
162 |
--gpus -1 --strategy ddp
|
163 |
```
|