sayyedAhmed commited on
Commit
a885b39
·
1 Parent(s): 265cf85

file added and deleted

Browse files
Files changed (3) hide show
  1. app.py +0 -87
  2. inference.py +79 -18
  3. requirements.txt +2 -1
app.py DELETED
@@ -1,87 +0,0 @@
1
- import streamlit as st
2
- import torch
3
- import numpy as np
4
- import matplotlib.pyplot as plt
5
- import seaborn as sns
6
- from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
7
- import joblib
8
-
9
- # Load the model and scaler
10
- def load_model(model_path, scaler_path):
11
- model_state = torch.load(model_path)
12
- model = LSTMPredictor(
13
- input_dim=model_state['model_architecture']['input_dim'],
14
- hidden_dim=model_state['model_architecture']['hidden_dim'],
15
- output_dim=model_state['model_architecture']['output_dim'],
16
- forecast_horizon=model_state['model_architecture']['forecast_horizon'],
17
- n_layers=model_state['model_architecture']['n_layers'],
18
- dropout=model_state['model_architecture']['dropout']
19
- )
20
- model.load_state_dict(model_state['model_state_dict'])
21
- scaler = joblib.load(scaler_path)
22
- return model, scaler
23
-
24
- # Prepare Streamlit interface
25
- st.title("Crisis Severity Prediction Model Evaluation")
26
- st.sidebar.title("Model Evaluation Dashboard")
27
-
28
- # Upload model and scaler files
29
- model_file = st.sidebar.file_uploader("Upload Trained Model", type=["pth", "pt"])
30
- scaler_file = st.sidebar.file_uploader("Upload Scaler File", type=["pkl"])
31
-
32
- if model_file and scaler_file:
33
- # Load model and scaler
34
- model, scaler = load_model(model_file, scaler_file)
35
-
36
- # Example of how to prepare test data (adjust for actual data)
37
- X_test = np.array([[...]]) # Test data input
38
- y_test = np.array([[...]]) # Actual target values
39
-
40
- # Scale the test data using the loaded scaler
41
- scaled_X_test = scaler.transform(X_test)
42
-
43
- # Convert to tensor
44
- X_test_tensor = torch.FloatTensor(scaled_X_test)
45
-
46
- # Get predictions
47
- model.eval()
48
- with torch.no_grad():
49
- predictions = model(X_test_tensor)
50
-
51
- # Evaluate and display metrics (using first 3 months for example)
52
- y_true = y_test
53
- y_pred = predictions.numpy()
54
-
55
- metrics = {}
56
- for month in range(3): # Assuming forecast for 3 months
57
- month_metrics = {
58
- 'mse': mean_squared_error(y_true[:, month], y_pred[:, month]),
59
- 'rmse': np.sqrt(mean_squared_error(y_true[:, month], y_pred[:, month])),
60
- 'mae': mean_absolute_error(y_true[:, month], y_pred[:, month]),
61
- 'r2': r2_score(y_true[:, month], y_pred[:, month])
62
- }
63
- metrics[f'month_{month+1}'] = month_metrics
64
-
65
- # Display metrics
66
- st.subheader("Model Performance Metrics:")
67
- for month, month_metrics in metrics.items():
68
- st.write(f"{month.upper()}:")
69
- for metric_name, metric_value in month_metrics.items():
70
- st.write(f"{metric_name.upper()}: {metric_value:.4f}")
71
-
72
- # Visualization (actual vs predicted)
73
- fig, ax = plt.subplots(figsize=(10, 6))
74
- for month in range(3):
75
- ax.scatter(y_true[:, month], y_pred[:, month], alpha=0.5, label=f'Month {month+1}')
76
- ax.plot([0, 5], [0, 5], 'r--')
77
- ax.set_xlabel('Actual Severity Index')
78
- ax.set_ylabel('Predicted Severity Index')
79
- ax.set_title('Actual vs Predicted')
80
- ax.legend()
81
-
82
- st.pyplot(fig)
83
-
84
- # Option to download plot
85
- st.download_button("Download Evaluation Plot", "evaluation_plot.png")
86
- else:
87
- st.warning("Please upload both the trained model and scaler files.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
inference.py CHANGED
@@ -1,24 +1,85 @@
1
- import requests
2
- import json
3
- import os
4
 
5
- # Your Hugging Face model URL
6
- API_URL = "sayyedAhmed/Crisis_Severity_Predictor_LSTM" # Replace with your model's URL
7
 
8
- # Load your Hugging Face API token
9
- API_KEY = os.getenv("HF_API_KEY") # Ensure the API key is stored in the environment or replace with the actual key
10
 
11
- headers = {
12
- "Authorization": f"Bearer {API_KEY}",
13
- "Content-Type": "application/json"
14
- }
15
 
16
- payload = {
17
- "inputs": "Your test input here" # Replace this with the actual input for your model
18
- }
19
 
20
- # Make the POST request to Hugging Face Inference API
21
- response = requests.post(API_URL, headers=headers, json=payload)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
- # Print the response (the predictions)
24
- print(response.json())
 
1
+ # import requests
2
+ # import json
3
+ # import os
4
 
5
+ # # Your Hugging Face model URL
6
+ # API_URL = "sayyedAhmed/Crisis_Severity_Predictor_LSTM" # Replace with your model's URL
7
 
8
+ # # Load your Hugging Face API token
9
+ # API_KEY = os.getenv("HF_API_KEY") # Ensure the API key is stored in the environment or replace with the actual key
10
 
11
+ # headers = {
12
+ # "Authorization": f"Bearer {API_KEY}",
13
+ # "Content-Type": "application/json"
14
+ # }
15
 
16
+ # payload = {
17
+ # "inputs": "Your test input here" # Replace this with the actual input for your model
18
+ # }
19
 
20
+ # # Make the POST request to Hugging Face Inference API
21
+ # response = requests.post(API_URL, headers=headers, json=payload)
22
+
23
+ # # Print the response (the predictions)
24
+ # print(response.json())
25
+ import torch
26
+ import numpy as np
27
+
28
+ # Define the model architecture (this should match the one used during training)
29
+ class LSTMPredictor(torch.nn.Module):
30
+ def __init__(self, input_dim, hidden_dim, output_dim, forecast_horizon, n_layers, dropout):
31
+ super(LSTMPredictor, self).__init__()
32
+ self.lstm = torch.nn.LSTM(input_dim, hidden_dim, n_layers, dropout=dropout, batch_first=True)
33
+ self.fc = torch.nn.Linear(hidden_dim, output_dim)
34
+ self.forecast_horizon = forecast_horizon
35
+
36
+ def forward(self, x):
37
+ # Forward pass through LSTM
38
+ lstm_out, _ = self.lstm(x)
39
+ # Only get the output from the last time step
40
+ out = self.fc(lstm_out[:, -1, :])
41
+ return out
42
+
43
+ # Load the model
44
+ def load_model(model_path):
45
+ model_state = torch.load(model_path)
46
+ model = LSTMPredictor(
47
+ input_dim=model_state['model_architecture']['input_dim'],
48
+ hidden_dim=model_state['model_architecture']['hidden_dim'],
49
+ output_dim=model_state['model_architecture']['output_dim'],
50
+ forecast_horizon=model_state['model_architecture']['forecast_horizon'],
51
+ n_layers=model_state['model_architecture']['n_layers'],
52
+ dropout=model_state['model_architecture']['dropout']
53
+ )
54
+ model.load_state_dict(model_state['model_state_dict'])
55
+ model.eval() # Set model to evaluation mode
56
+ return model
57
+
58
+ # Inference function
59
+ def predict(model, features):
60
+ # Convert input features to tensor
61
+ input_tensor = torch.FloatTensor(features)
62
+
63
+ # Get model prediction
64
+ with torch.no_grad():
65
+ predictions = model(input_tensor).numpy() # No gradients needed for inference
66
+
67
+ return predictions.tolist()
68
+
69
+ # Main function to load the model and make predictions
70
+ if __name__ == "__main__":
71
+ # Load the trained model
72
+ model = load_model('lstm_crisis_severity_predictor_20241116_092126.pt') # Replace with actual model path
73
+
74
+ # Example input data (features) - Replace with actual features
75
+ test_features = np.array([[1.23, 4.56, 7.89, 10.11]]) # Example test features
76
+
77
+ # Reshape for LSTM: (batch_size, seq_len, input_dim)
78
+ test_features = test_features.reshape((test_features.shape[0], 1, test_features.shape[1]))
79
+
80
+ # Get predictions
81
+ predictions = predict(model, test_features)
82
+
83
+ # Output predictions
84
+ print("Predictions:", predictions)
85
 
 
 
requirements.txt CHANGED
@@ -23,4 +23,5 @@ python-dotenv
23
  pytest
24
  joblib
25
  plotly
26
- requests
 
 
23
  pytest
24
  joblib
25
  plotly
26
+ requests
27
+ streamlit