--- library_name: stable-baselines3 tags: - MountainCarContinuous-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 94.57 +/- 0.45 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCarContinuous-v0 type: MountainCarContinuous-v0 --- # **PPO** Agent playing **MountainCarContinuous-v0** This is a trained model of a **PPO** agent playing **MountainCarContinuous-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo ppo --env MountainCarContinuous-v0 -orga sb3 -f logs/ python enjoy --algo ppo --env MountainCarContinuous-v0 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo ppo --env MountainCarContinuous-v0 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo ppo --env MountainCarContinuous-v0 -f logs/ -orga sb3 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('clip_range', 0.1), ('ent_coef', 0.00429), ('gae_lambda', 0.9), ('gamma', 0.9999), ('learning_rate', 7.77e-05), ('max_grad_norm', 5), ('n_envs', 1), ('n_epochs', 10), ('n_steps', 8), ('n_timesteps', 20000.0), ('normalize', True), ('policy', 'MlpPolicy'), ('policy_kwargs', 'dict(log_std_init=-3.29, ortho_init=False)'), ('use_sde', True), ('vf_coef', 0.19), ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})]) ```