sbottazziunsam commited on
Commit
f52d2e6
1 Parent(s): 7fdaaab

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +126 -0
README.md ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - f1
9
+ model-index:
10
+ - name: 11-classifier-finetuned-padchest
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: F1
23
+ type: f1
24
+ value: 0.5097608873456089
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # 11-classifier-finetuned-padchest
31
+
32
+ This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 1.1743
35
+ - F1: 0.5098
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 32
56
+ - eval_batch_size: 32
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 128
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 50
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | F1 |
68
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
69
+ | 2.0747 | 1.0 | 18 | 2.0666 | 0.1549 |
70
+ | 2.0661 | 2.0 | 36 | 2.0560 | 0.1777 |
71
+ | 2.0497 | 3.0 | 54 | 2.0385 | 0.2169 |
72
+ | 2.018 | 4.0 | 72 | 2.0047 | 0.2515 |
73
+ | 1.9792 | 5.0 | 90 | 1.9773 | 0.2329 |
74
+ | 1.9619 | 6.0 | 108 | 1.9421 | 0.2321 |
75
+ | 1.9186 | 7.0 | 126 | 1.9145 | 0.2055 |
76
+ | 1.8838 | 8.0 | 144 | 1.8976 | 0.2596 |
77
+ | 1.8402 | 9.0 | 162 | 1.8444 | 0.2337 |
78
+ | 1.7906 | 10.0 | 180 | 1.7951 | 0.2397 |
79
+ | 1.7716 | 11.0 | 198 | 1.7695 | 0.3373 |
80
+ | 1.7474 | 12.0 | 216 | 1.7940 | 0.3209 |
81
+ | 1.6957 | 13.0 | 234 | 1.7425 | 0.3314 |
82
+ | 1.6791 | 14.0 | 252 | 1.6727 | 0.3558 |
83
+ | 1.6483 | 15.0 | 270 | 1.6638 | 0.3895 |
84
+ | 1.614 | 16.0 | 288 | 1.6513 | 0.4186 |
85
+ | 1.6166 | 17.0 | 306 | 1.6002 | 0.4406 |
86
+ | 1.5654 | 18.0 | 324 | 1.5528 | 0.4627 |
87
+ | 1.5145 | 19.0 | 342 | 1.5571 | 0.4676 |
88
+ | 1.5049 | 20.0 | 360 | 1.4334 | 0.4364 |
89
+ | 1.457 | 21.0 | 378 | 1.4711 | 0.4535 |
90
+ | 1.4516 | 22.0 | 396 | 1.5013 | 0.4516 |
91
+ | 1.4172 | 23.0 | 414 | 1.3614 | 0.4682 |
92
+ | 1.3817 | 24.0 | 432 | 1.3519 | 0.4545 |
93
+ | 1.3987 | 25.0 | 450 | 1.3806 | 0.4759 |
94
+ | 1.4063 | 26.0 | 468 | 1.2961 | 0.4866 |
95
+ | 1.3684 | 27.0 | 486 | 1.3328 | 0.4768 |
96
+ | 1.3789 | 28.0 | 504 | 1.2810 | 0.4859 |
97
+ | 1.341 | 29.0 | 522 | 1.3227 | 0.4737 |
98
+ | 1.3574 | 30.0 | 540 | 1.2406 | 0.5025 |
99
+ | 1.357 | 31.0 | 558 | 1.2427 | 0.5033 |
100
+ | 1.3204 | 32.0 | 576 | 1.2478 | 0.5053 |
101
+ | 1.3122 | 33.0 | 594 | 1.2205 | 0.5133 |
102
+ | 1.334 | 34.0 | 612 | 1.2138 | 0.5204 |
103
+ | 1.2998 | 35.0 | 630 | 1.2122 | 0.5111 |
104
+ | 1.3097 | 36.0 | 648 | 1.2118 | 0.5102 |
105
+ | 1.2956 | 37.0 | 666 | 1.2077 | 0.5163 |
106
+ | 1.3058 | 38.0 | 684 | 1.2023 | 0.5157 |
107
+ | 1.2851 | 39.0 | 702 | 1.1968 | 0.5067 |
108
+ | 1.2728 | 40.0 | 720 | 1.1940 | 0.5169 |
109
+ | 1.2653 | 41.0 | 738 | 1.1700 | 0.5165 |
110
+ | 1.2837 | 42.0 | 756 | 1.1767 | 0.5262 |
111
+ | 1.2789 | 43.0 | 774 | 1.1885 | 0.5146 |
112
+ | 1.2343 | 44.0 | 792 | 1.1925 | 0.5101 |
113
+ | 1.2454 | 45.0 | 810 | 1.1874 | 0.5119 |
114
+ | 1.2922 | 46.0 | 828 | 1.1845 | 0.5216 |
115
+ | 1.2547 | 47.0 | 846 | 1.1920 | 0.5299 |
116
+ | 1.272 | 48.0 | 864 | 1.1732 | 0.5225 |
117
+ | 1.2506 | 49.0 | 882 | 1.1722 | 0.5117 |
118
+ | 1.2494 | 50.0 | 900 | 1.1743 | 0.5098 |
119
+
120
+
121
+ ### Framework versions
122
+
123
+ - Transformers 4.28.0.dev0
124
+ - Pytorch 2.0.0+cu117
125
+ - Datasets 2.18.0
126
+ - Tokenizers 0.13.3