Upload 11 files
Browse files- config.json +111 -0
- generation_config.json +8 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +28 -0
- tokenizer_config.json +157 -0
- trainer_state.json +3521 -0
- vocab.json +0 -0
- zero_to_fp32.py +604 -0
config.json
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"TinyLlavaForConditionalGeneration"
|
4 |
+
],
|
5 |
+
"cache_dir": null,
|
6 |
+
"connector_type": "mlp2x_gelu",
|
7 |
+
"hidden_size": 576,
|
8 |
+
"ignore_index": -100,
|
9 |
+
"image_aspect_ratio": "square",
|
10 |
+
"image_token_index": -200,
|
11 |
+
"llm_model_name_or_path": "HuggingFaceTB/SmolLM2-135M-Instruct",
|
12 |
+
"model_type": "tinyllava",
|
13 |
+
"num_queries": 128,
|
14 |
+
"num_resampler_layers": 3,
|
15 |
+
"pad_token": "<|endoftext|>",
|
16 |
+
"pad_token_id": 0,
|
17 |
+
"resampler_hidden_size": 768,
|
18 |
+
"text_config": {
|
19 |
+
"_name_or_path": "HuggingFaceTB/SmolLM2-135M-Instruct",
|
20 |
+
"architectures": [
|
21 |
+
"LlamaForCausalLM"
|
22 |
+
],
|
23 |
+
"hidden_size": 576,
|
24 |
+
"initializer_range": 0.041666666666666664,
|
25 |
+
"intermediate_size": 1536,
|
26 |
+
"is_llama_config": true,
|
27 |
+
"max_position_embeddings": 8192,
|
28 |
+
"mlp_bias": false,
|
29 |
+
"model_type": "llama",
|
30 |
+
"num_attention_heads": 9,
|
31 |
+
"num_hidden_layers": 30,
|
32 |
+
"num_key_value_heads": 3,
|
33 |
+
"pad_token_id": 2,
|
34 |
+
"rms_norm_eps": 1e-05,
|
35 |
+
"rope_interleaved": false,
|
36 |
+
"rope_theta": 100000,
|
37 |
+
"tie_word_embeddings": true,
|
38 |
+
"torch_dtype": "float16",
|
39 |
+
"transformers.js_config": {
|
40 |
+
"kv_cache_dtype": {
|
41 |
+
"fp16": "float16",
|
42 |
+
"q4f16": "float16"
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"vocab_size": 49152
|
46 |
+
},
|
47 |
+
"tokenizer_model_max_length": 2048,
|
48 |
+
"tokenizer_name_or_path": "HuggingFaceTB/SmolLM2-135M-Instruct",
|
49 |
+
"tokenizer_padding_side": "right",
|
50 |
+
"tokenizer_use_fast": false,
|
51 |
+
"torch_dtype": "float16",
|
52 |
+
"transformers_version": "4.39.3",
|
53 |
+
"tune_type_connector": "full",
|
54 |
+
"tune_type_llm": "frozen",
|
55 |
+
"tune_type_vision_tower": "frozen",
|
56 |
+
"tune_vision_tower_from_layer": 0,
|
57 |
+
"use_cache": false,
|
58 |
+
"vision_config": {
|
59 |
+
"_name_or_path": "facebook/dinov2-small",
|
60 |
+
"apply_layernorm": true,
|
61 |
+
"architectures": [
|
62 |
+
"Dinov2Model"
|
63 |
+
],
|
64 |
+
"attention_probs_dropout_prob": 0.0,
|
65 |
+
"drop_path_rate": 0.0,
|
66 |
+
"hidden_act": "gelu",
|
67 |
+
"hidden_dropout_prob": 0.0,
|
68 |
+
"hidden_size": 384,
|
69 |
+
"image_size": 518,
|
70 |
+
"layer_norm_eps": 1e-06,
|
71 |
+
"layerscale_value": 1.0,
|
72 |
+
"mlp_ratio": 4,
|
73 |
+
"model_name_or_path": "facebook/dinov2-small",
|
74 |
+
"model_name_or_path2": "",
|
75 |
+
"model_type": "dinov2",
|
76 |
+
"num_attention_heads": 6,
|
77 |
+
"num_hidden_layers": 12,
|
78 |
+
"out_features": [
|
79 |
+
"stage12"
|
80 |
+
],
|
81 |
+
"out_indices": [
|
82 |
+
12
|
83 |
+
],
|
84 |
+
"patch_size": 14,
|
85 |
+
"qkv_bias": true,
|
86 |
+
"reshape_hidden_states": true,
|
87 |
+
"stage_names": [
|
88 |
+
"stem",
|
89 |
+
"stage1",
|
90 |
+
"stage2",
|
91 |
+
"stage3",
|
92 |
+
"stage4",
|
93 |
+
"stage5",
|
94 |
+
"stage6",
|
95 |
+
"stage7",
|
96 |
+
"stage8",
|
97 |
+
"stage9",
|
98 |
+
"stage10",
|
99 |
+
"stage11",
|
100 |
+
"stage12"
|
101 |
+
],
|
102 |
+
"torch_dtype": "float32",
|
103 |
+
"use_swiglu_ffn": false
|
104 |
+
},
|
105 |
+
"vision_feature_layer": -2,
|
106 |
+
"vision_feature_select_strategy": "patch",
|
107 |
+
"vision_hidden_size": 384,
|
108 |
+
"vision_model_name_or_path": "facebook/dinov2-small",
|
109 |
+
"vision_model_name_or_path2": "",
|
110 |
+
"vocab_size": 49152
|
111 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 2,
|
6 |
+
"transformers_version": "4.39.3",
|
7 |
+
"use_cache": false
|
8 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98b8b99db344e92e6a37dd42a6d4c7874d7e1a990a4c991deb3231cc962b7424
|
3 |
+
size 314316256
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:835f869ea325fd6edf27b48b589309fb66641cb92b45f2fc13d1bb6e8814106c
|
3 |
+
size 14244
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:577fe24c67df92dec5a643aa1599690ef896ca41cbbb97802177c72073e27add
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"bos_token": {
|
7 |
+
"content": "<|im_start|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"eos_token": {
|
14 |
+
"content": "<|im_end|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
+
"pad_token": "<|endoftext|>",
|
21 |
+
"unk_token": {
|
22 |
+
"content": "<|endoftext|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false
|
27 |
+
}
|
28 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"3": {
|
30 |
+
"content": "<repo_name>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"4": {
|
38 |
+
"content": "<reponame>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"5": {
|
46 |
+
"content": "<file_sep>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"6": {
|
54 |
+
"content": "<filename>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"7": {
|
62 |
+
"content": "<gh_stars>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"8": {
|
70 |
+
"content": "<issue_start>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"9": {
|
78 |
+
"content": "<issue_comment>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"10": {
|
86 |
+
"content": "<issue_closed>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"11": {
|
94 |
+
"content": "<jupyter_start>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"12": {
|
102 |
+
"content": "<jupyter_text>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"13": {
|
110 |
+
"content": "<jupyter_code>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"14": {
|
118 |
+
"content": "<jupyter_output>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": true
|
124 |
+
},
|
125 |
+
"15": {
|
126 |
+
"content": "<jupyter_script>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": true
|
132 |
+
},
|
133 |
+
"16": {
|
134 |
+
"content": "<empty_output>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": true
|
140 |
+
}
|
141 |
+
},
|
142 |
+
"additional_special_tokens": [
|
143 |
+
"<|im_start|>",
|
144 |
+
"<|im_end|>"
|
145 |
+
],
|
146 |
+
"bos_token": "<|im_start|>",
|
147 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful AI assistant named SmolLM, trained by Hugging Face<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
148 |
+
"clean_up_tokenization_spaces": false,
|
149 |
+
"eos_token": "<|im_end|>",
|
150 |
+
"errors": "replace",
|
151 |
+
"model_max_length": 2048,
|
152 |
+
"pad_token": "<|endoftext|>",
|
153 |
+
"padding_side": "right",
|
154 |
+
"tokenizer_class": "GPT2Tokenizer",
|
155 |
+
"unk_token": "<|endoftext|>",
|
156 |
+
"vocab_size": 49152
|
157 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,3521 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.11466574934067195,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 500,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0,
|
13 |
+
"grad_norm": 0.0,
|
14 |
+
"learning_rate": 0.0,
|
15 |
+
"loss": 7.2451,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0,
|
20 |
+
"grad_norm": 0.0,
|
21 |
+
"learning_rate": 0.0,
|
22 |
+
"loss": 7.3192,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0,
|
27 |
+
"grad_norm": 14.819024134660662,
|
28 |
+
"learning_rate": 1.3333333333333334e-06,
|
29 |
+
"loss": 7.2901,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.0,
|
34 |
+
"grad_norm": 14.819024134660662,
|
35 |
+
"learning_rate": 1.3333333333333334e-06,
|
36 |
+
"loss": 7.4127,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.0,
|
41 |
+
"grad_norm": 14.199093979418544,
|
42 |
+
"learning_rate": 2.666666666666667e-06,
|
43 |
+
"loss": 7.4321,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.0,
|
48 |
+
"grad_norm": 10.185841979858534,
|
49 |
+
"learning_rate": 4.000000000000001e-06,
|
50 |
+
"loss": 7.1568,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.0,
|
55 |
+
"grad_norm": 39.91704954913313,
|
56 |
+
"learning_rate": 5.333333333333334e-06,
|
57 |
+
"loss": 7.2837,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.0,
|
62 |
+
"grad_norm": 18.930408398058322,
|
63 |
+
"learning_rate": 6.666666666666667e-06,
|
64 |
+
"loss": 7.2329,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.0,
|
69 |
+
"grad_norm": 8.865495224195184,
|
70 |
+
"learning_rate": 8.000000000000001e-06,
|
71 |
+
"loss": 7.1651,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.0,
|
76 |
+
"grad_norm": 35.166574749663724,
|
77 |
+
"learning_rate": 9.333333333333334e-06,
|
78 |
+
"loss": 7.1455,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.0,
|
83 |
+
"grad_norm": 14.929376279495122,
|
84 |
+
"learning_rate": 1.0666666666666667e-05,
|
85 |
+
"loss": 7.2938,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.0,
|
90 |
+
"grad_norm": 14.323589623470497,
|
91 |
+
"learning_rate": 1.2e-05,
|
92 |
+
"loss": 7.136,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.0,
|
97 |
+
"grad_norm": 12.033497318446193,
|
98 |
+
"learning_rate": 1.3333333333333333e-05,
|
99 |
+
"loss": 7.2873,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.0,
|
104 |
+
"grad_norm": 12.713515670882014,
|
105 |
+
"learning_rate": 1.4666666666666666e-05,
|
106 |
+
"loss": 7.1778,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.0,
|
111 |
+
"grad_norm": 16.40476702849706,
|
112 |
+
"learning_rate": 1.6000000000000003e-05,
|
113 |
+
"loss": 7.3031,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.0,
|
118 |
+
"grad_norm": 16.463860488428647,
|
119 |
+
"learning_rate": 1.7333333333333336e-05,
|
120 |
+
"loss": 6.958,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.0,
|
125 |
+
"grad_norm": 11.114739607650908,
|
126 |
+
"learning_rate": 1.866666666666667e-05,
|
127 |
+
"loss": 7.328,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.0,
|
132 |
+
"grad_norm": 8.560556168903155,
|
133 |
+
"learning_rate": 2e-05,
|
134 |
+
"loss": 6.8535,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.0,
|
139 |
+
"grad_norm": 11.543963578227485,
|
140 |
+
"learning_rate": 1.999979021001399e-05,
|
141 |
+
"loss": 7.1039,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.0,
|
146 |
+
"grad_norm": 13.024267824258278,
|
147 |
+
"learning_rate": 1.999916084885832e-05,
|
148 |
+
"loss": 7.03,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.0,
|
153 |
+
"grad_norm": 24.347656967541983,
|
154 |
+
"learning_rate": 1.9998111942939727e-05,
|
155 |
+
"loss": 7.1369,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.01,
|
160 |
+
"grad_norm": 13.978477853833892,
|
161 |
+
"learning_rate": 1.9996643536268202e-05,
|
162 |
+
"loss": 7.1052,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.01,
|
167 |
+
"grad_norm": 9.01222616499256,
|
168 |
+
"learning_rate": 1.9994755690455154e-05,
|
169 |
+
"loss": 7.2016,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.01,
|
174 |
+
"grad_norm": 8.338853855265398,
|
175 |
+
"learning_rate": 1.99924484847108e-05,
|
176 |
+
"loss": 7.0447,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.01,
|
181 |
+
"grad_norm": 14.599634725835617,
|
182 |
+
"learning_rate": 1.998972201584088e-05,
|
183 |
+
"loss": 7.0037,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.01,
|
188 |
+
"grad_norm": 8.332198683157735,
|
189 |
+
"learning_rate": 1.9986576398242566e-05,
|
190 |
+
"loss": 7.1784,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.01,
|
195 |
+
"grad_norm": 14.23890995116397,
|
196 |
+
"learning_rate": 1.9983011763899674e-05,
|
197 |
+
"loss": 6.8922,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.01,
|
202 |
+
"grad_norm": 8.923950492978154,
|
203 |
+
"learning_rate": 1.997902826237712e-05,
|
204 |
+
"loss": 6.9407,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.01,
|
209 |
+
"grad_norm": 8.06378020962777,
|
210 |
+
"learning_rate": 1.997462606081465e-05,
|
211 |
+
"loss": 7.1025,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.01,
|
216 |
+
"grad_norm": 11.24345210949927,
|
217 |
+
"learning_rate": 1.9969805343919822e-05,
|
218 |
+
"loss": 6.9762,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.01,
|
223 |
+
"grad_norm": 8.092214633553768,
|
224 |
+
"learning_rate": 1.9964566313960265e-05,
|
225 |
+
"loss": 7.0578,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.01,
|
230 |
+
"grad_norm": 12.87228727478449,
|
231 |
+
"learning_rate": 1.995890919075519e-05,
|
232 |
+
"loss": 6.8295,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.01,
|
237 |
+
"grad_norm": 7.111093086376143,
|
238 |
+
"learning_rate": 1.995283421166614e-05,
|
239 |
+
"loss": 6.7973,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.01,
|
244 |
+
"grad_norm": 8.632087862294554,
|
245 |
+
"learning_rate": 1.9946341631587086e-05,
|
246 |
+
"loss": 6.7752,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.01,
|
251 |
+
"grad_norm": 8.994822315110934,
|
252 |
+
"learning_rate": 1.9939431722933678e-05,
|
253 |
+
"loss": 7.0197,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.01,
|
258 |
+
"grad_norm": 7.486951908393647,
|
259 |
+
"learning_rate": 1.9932104775631847e-05,
|
260 |
+
"loss": 6.8283,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.01,
|
265 |
+
"grad_norm": 7.4584761693908375,
|
266 |
+
"learning_rate": 1.9924361097105624e-05,
|
267 |
+
"loss": 6.8002,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.01,
|
272 |
+
"grad_norm": 6.261343208572681,
|
273 |
+
"learning_rate": 1.9916201012264255e-05,
|
274 |
+
"loss": 6.6381,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.01,
|
279 |
+
"grad_norm": 18.79112809499115,
|
280 |
+
"learning_rate": 1.990762486348855e-05,
|
281 |
+
"loss": 7.01,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.01,
|
286 |
+
"grad_norm": 7.150915500939425,
|
287 |
+
"learning_rate": 1.989863301061654e-05,
|
288 |
+
"loss": 6.9012,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.01,
|
293 |
+
"grad_norm": 6.738925101776216,
|
294 |
+
"learning_rate": 1.9889225830928365e-05,
|
295 |
+
"loss": 6.7694,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.01,
|
300 |
+
"grad_norm": 6.944529789995812,
|
301 |
+
"learning_rate": 1.987940371913044e-05,
|
302 |
+
"loss": 6.799,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.01,
|
307 |
+
"grad_norm": 7.556349878373683,
|
308 |
+
"learning_rate": 1.9869167087338908e-05,
|
309 |
+
"loss": 6.6428,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.01,
|
314 |
+
"grad_norm": 6.611474483622349,
|
315 |
+
"learning_rate": 1.9858516365062334e-05,
|
316 |
+
"loss": 6.6243,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.01,
|
321 |
+
"grad_norm": 6.916298787571706,
|
322 |
+
"learning_rate": 1.9847451999183692e-05,
|
323 |
+
"loss": 6.6087,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.01,
|
328 |
+
"grad_norm": 8.457565509913838,
|
329 |
+
"learning_rate": 1.9835974453941623e-05,
|
330 |
+
"loss": 6.7551,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.01,
|
335 |
+
"grad_norm": 8.540062078386342,
|
336 |
+
"learning_rate": 1.9824084210910924e-05,
|
337 |
+
"loss": 6.6972,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.01,
|
342 |
+
"grad_norm": 7.4270052163791185,
|
343 |
+
"learning_rate": 1.9811781768982392e-05,
|
344 |
+
"loss": 6.9304,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.01,
|
349 |
+
"grad_norm": 7.31190391936824,
|
350 |
+
"learning_rate": 1.9799067644341844e-05,
|
351 |
+
"loss": 6.7148,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.01,
|
356 |
+
"grad_norm": 6.181290414236328,
|
357 |
+
"learning_rate": 1.978594237044849e-05,
|
358 |
+
"loss": 6.6086,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.01,
|
363 |
+
"grad_norm": 6.059093545289046,
|
364 |
+
"learning_rate": 1.977240649801253e-05,
|
365 |
+
"loss": 6.5689,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.01,
|
370 |
+
"grad_norm": 7.376855166703994,
|
371 |
+
"learning_rate": 1.9758460594972068e-05,
|
372 |
+
"loss": 6.5767,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.01,
|
377 |
+
"grad_norm": 9.315509966882654,
|
378 |
+
"learning_rate": 1.9744105246469264e-05,
|
379 |
+
"loss": 6.601,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.01,
|
384 |
+
"grad_norm": 7.110322978482923,
|
385 |
+
"learning_rate": 1.9729341054825783e-05,
|
386 |
+
"loss": 6.5206,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.01,
|
391 |
+
"grad_norm": 8.348814181636438,
|
392 |
+
"learning_rate": 1.9714168639517543e-05,
|
393 |
+
"loss": 6.6781,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.01,
|
398 |
+
"grad_norm": 7.889124746527842,
|
399 |
+
"learning_rate": 1.9698588637148705e-05,
|
400 |
+
"loss": 6.363,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.01,
|
405 |
+
"grad_norm": 6.048373264000878,
|
406 |
+
"learning_rate": 1.9682601701424958e-05,
|
407 |
+
"loss": 6.5605,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.01,
|
412 |
+
"grad_norm": 6.666923562210865,
|
413 |
+
"learning_rate": 1.9666208503126115e-05,
|
414 |
+
"loss": 6.5264,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.01,
|
419 |
+
"grad_norm": 6.215144195698015,
|
420 |
+
"learning_rate": 1.9649409730077934e-05,
|
421 |
+
"loss": 6.7055,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.01,
|
426 |
+
"grad_norm": 5.851763399842508,
|
427 |
+
"learning_rate": 1.9632206087123296e-05,
|
428 |
+
"loss": 6.3156,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.01,
|
433 |
+
"grad_norm": 6.899818690987695,
|
434 |
+
"learning_rate": 1.9614598296092603e-05,
|
435 |
+
"loss": 6.5751,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.01,
|
440 |
+
"grad_norm": 6.233556175977335,
|
441 |
+
"learning_rate": 1.9596587095773496e-05,
|
442 |
+
"loss": 6.3861,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.01,
|
447 |
+
"grad_norm": 6.677665311671007,
|
448 |
+
"learning_rate": 1.957817324187987e-05,
|
449 |
+
"loss": 6.5699,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.01,
|
454 |
+
"grad_norm": 6.655226097949778,
|
455 |
+
"learning_rate": 1.9559357507020163e-05,
|
456 |
+
"loss": 6.5021,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.01,
|
461 |
+
"grad_norm": 7.47281811823693,
|
462 |
+
"learning_rate": 1.9540140680664915e-05,
|
463 |
+
"loss": 6.5324,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.02,
|
468 |
+
"grad_norm": 5.6360351804666475,
|
469 |
+
"learning_rate": 1.952052356911368e-05,
|
470 |
+
"loss": 6.6096,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.02,
|
475 |
+
"grad_norm": 5.4238841079756615,
|
476 |
+
"learning_rate": 1.950050699546116e-05,
|
477 |
+
"loss": 6.2913,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.02,
|
482 |
+
"grad_norm": 6.691271836321062,
|
483 |
+
"learning_rate": 1.9480091799562706e-05,
|
484 |
+
"loss": 6.6404,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.02,
|
489 |
+
"grad_norm": 5.779952770675111,
|
490 |
+
"learning_rate": 1.9459278837999048e-05,
|
491 |
+
"loss": 6.5131,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.02,
|
496 |
+
"grad_norm": 5.75641781132488,
|
497 |
+
"learning_rate": 1.9438068984040366e-05,
|
498 |
+
"loss": 6.4102,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.02,
|
503 |
+
"grad_norm": 5.473240945440776,
|
504 |
+
"learning_rate": 1.9416463127609655e-05,
|
505 |
+
"loss": 6.1943,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.02,
|
510 |
+
"grad_norm": 5.639227300435135,
|
511 |
+
"learning_rate": 1.9394462175245382e-05,
|
512 |
+
"loss": 6.2661,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.02,
|
517 |
+
"grad_norm": 6.359397311850186,
|
518 |
+
"learning_rate": 1.937206705006344e-05,
|
519 |
+
"loss": 6.3749,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.02,
|
524 |
+
"grad_norm": 5.9168823793145835,
|
525 |
+
"learning_rate": 1.9349278691718426e-05,
|
526 |
+
"loss": 6.4857,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.02,
|
531 |
+
"grad_norm": 5.934252295974776,
|
532 |
+
"learning_rate": 1.9326098056364224e-05,
|
533 |
+
"loss": 6.4401,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.02,
|
538 |
+
"grad_norm": 5.184345891936555,
|
539 |
+
"learning_rate": 1.9302526116613863e-05,
|
540 |
+
"loss": 6.272,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.02,
|
545 |
+
"grad_norm": 6.42618267064823,
|
546 |
+
"learning_rate": 1.9278563861498726e-05,
|
547 |
+
"loss": 6.4017,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.02,
|
552 |
+
"grad_norm": 5.698764300135597,
|
553 |
+
"learning_rate": 1.9254212296427043e-05,
|
554 |
+
"loss": 6.422,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.02,
|
559 |
+
"grad_norm": 5.515269918748001,
|
560 |
+
"learning_rate": 1.922947244314172e-05,
|
561 |
+
"loss": 6.4018,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.02,
|
566 |
+
"grad_norm": 5.186220316136429,
|
567 |
+
"learning_rate": 1.9204345339677442e-05,
|
568 |
+
"loss": 6.4008,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.02,
|
573 |
+
"grad_norm": 6.071075169984412,
|
574 |
+
"learning_rate": 1.9178832040317153e-05,
|
575 |
+
"loss": 6.236,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.02,
|
580 |
+
"grad_norm": 5.211523270674776,
|
581 |
+
"learning_rate": 1.91529336155478e-05,
|
582 |
+
"loss": 6.2431,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.02,
|
587 |
+
"grad_norm": 4.654030406820622,
|
588 |
+
"learning_rate": 1.9126651152015404e-05,
|
589 |
+
"loss": 6.1377,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.02,
|
594 |
+
"grad_norm": 5.542618960137867,
|
595 |
+
"learning_rate": 1.9099985752479505e-05,
|
596 |
+
"loss": 6.3531,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.02,
|
601 |
+
"grad_norm": 4.807919282457549,
|
602 |
+
"learning_rate": 1.9072938535766864e-05,
|
603 |
+
"loss": 6.2508,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.02,
|
608 |
+
"grad_norm": 4.852730067283944,
|
609 |
+
"learning_rate": 1.904551063672452e-05,
|
610 |
+
"loss": 6.2348,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.02,
|
615 |
+
"grad_norm": 4.925798203153842,
|
616 |
+
"learning_rate": 1.9017703206172187e-05,
|
617 |
+
"loss": 6.2765,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.02,
|
622 |
+
"grad_norm": 5.0975569371666865,
|
623 |
+
"learning_rate": 1.8989517410853956e-05,
|
624 |
+
"loss": 6.2451,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.02,
|
629 |
+
"grad_norm": 4.699489385610056,
|
630 |
+
"learning_rate": 1.896095443338935e-05,
|
631 |
+
"loss": 6.2578,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.02,
|
636 |
+
"grad_norm": 5.660080834025456,
|
637 |
+
"learning_rate": 1.8932015472223692e-05,
|
638 |
+
"loss": 6.2843,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.02,
|
643 |
+
"grad_norm": 4.9661954295884225,
|
644 |
+
"learning_rate": 1.8902701741577844e-05,
|
645 |
+
"loss": 6.1715,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.02,
|
650 |
+
"grad_norm": 4.888648288627258,
|
651 |
+
"learning_rate": 1.8873014471397225e-05,
|
652 |
+
"loss": 6.2495,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.02,
|
657 |
+
"grad_norm": 4.710120588181978,
|
658 |
+
"learning_rate": 1.8842954907300236e-05,
|
659 |
+
"loss": 5.9913,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.02,
|
664 |
+
"grad_norm": 5.155284987315298,
|
665 |
+
"learning_rate": 1.881252431052599e-05,
|
666 |
+
"loss": 6.3151,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.02,
|
671 |
+
"grad_norm": 5.013674756768704,
|
672 |
+
"learning_rate": 1.8781723957881374e-05,
|
673 |
+
"loss": 6.2286,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.02,
|
678 |
+
"grad_norm": 4.011825376784628,
|
679 |
+
"learning_rate": 1.87505551416875e-05,
|
680 |
+
"loss": 6.2459,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.02,
|
685 |
+
"grad_norm": 4.835636123417131,
|
686 |
+
"learning_rate": 1.871901916972547e-05,
|
687 |
+
"loss": 6.2033,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.02,
|
692 |
+
"grad_norm": 5.171704259527532,
|
693 |
+
"learning_rate": 1.8687117365181514e-05,
|
694 |
+
"loss": 6.2608,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.02,
|
699 |
+
"grad_norm": 5.181750952717401,
|
700 |
+
"learning_rate": 1.865485106659145e-05,
|
701 |
+
"loss": 6.0338,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.02,
|
706 |
+
"grad_norm": 4.687033388755913,
|
707 |
+
"learning_rate": 1.862222162778454e-05,
|
708 |
+
"loss": 6.1161,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.02,
|
713 |
+
"grad_norm": 5.061452310176261,
|
714 |
+
"learning_rate": 1.85892304178267e-05,
|
715 |
+
"loss": 6.1018,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.02,
|
720 |
+
"grad_norm": 4.742767764167209,
|
721 |
+
"learning_rate": 1.8555878820963014e-05,
|
722 |
+
"loss": 6.2337,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.02,
|
727 |
+
"grad_norm": 5.294660524784012,
|
728 |
+
"learning_rate": 1.8522168236559693e-05,
|
729 |
+
"loss": 6.2453,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.02,
|
734 |
+
"grad_norm": 4.1375219719939915,
|
735 |
+
"learning_rate": 1.8488100079045345e-05,
|
736 |
+
"loss": 6.1595,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.02,
|
741 |
+
"grad_norm": 4.537495039210601,
|
742 |
+
"learning_rate": 1.8453675777851627e-05,
|
743 |
+
"loss": 6.1449,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.02,
|
748 |
+
"grad_norm": 5.402914196313115,
|
749 |
+
"learning_rate": 1.8418896777353272e-05,
|
750 |
+
"loss": 6.2237,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.02,
|
755 |
+
"grad_norm": 4.1771424603623615,
|
756 |
+
"learning_rate": 1.8383764536807486e-05,
|
757 |
+
"loss": 6.1728,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.02,
|
762 |
+
"grad_norm": 4.198851233644863,
|
763 |
+
"learning_rate": 1.8348280530292712e-05,
|
764 |
+
"loss": 6.0628,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.02,
|
769 |
+
"grad_norm": 4.559214073625153,
|
770 |
+
"learning_rate": 1.831244624664681e-05,
|
771 |
+
"loss": 6.2743,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.03,
|
776 |
+
"grad_norm": 3.97241616226669,
|
777 |
+
"learning_rate": 1.827626318940454e-05,
|
778 |
+
"loss": 6.1513,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.03,
|
783 |
+
"grad_norm": 4.029464327696206,
|
784 |
+
"learning_rate": 1.8239732876734525e-05,
|
785 |
+
"loss": 6.1743,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.03,
|
790 |
+
"grad_norm": 4.9362284691818905,
|
791 |
+
"learning_rate": 1.8202856841375517e-05,
|
792 |
+
"loss": 6.0945,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.03,
|
797 |
+
"grad_norm": 5.525591589138074,
|
798 |
+
"learning_rate": 1.816563663057211e-05,
|
799 |
+
"loss": 6.2648,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.03,
|
804 |
+
"grad_norm": 3.913078134221513,
|
805 |
+
"learning_rate": 1.81280738060098e-05,
|
806 |
+
"loss": 6.0767,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.03,
|
811 |
+
"grad_norm": 4.539776653253226,
|
812 |
+
"learning_rate": 1.8090169943749477e-05,
|
813 |
+
"loss": 6.2008,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.03,
|
818 |
+
"grad_norm": 7.07561003185471,
|
819 |
+
"learning_rate": 1.8051926634161282e-05,
|
820 |
+
"loss": 6.1817,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.03,
|
825 |
+
"grad_norm": 4.4932679628420376,
|
826 |
+
"learning_rate": 1.8013345481857903e-05,
|
827 |
+
"loss": 6.0112,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.03,
|
832 |
+
"grad_norm": 4.728104224718154,
|
833 |
+
"learning_rate": 1.797442810562721e-05,
|
834 |
+
"loss": 6.1642,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.03,
|
839 |
+
"grad_norm": 5.010653662783029,
|
840 |
+
"learning_rate": 1.793517613836437e-05,
|
841 |
+
"loss": 6.0345,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.03,
|
846 |
+
"grad_norm": 4.58293874507086,
|
847 |
+
"learning_rate": 1.7895591227003316e-05,
|
848 |
+
"loss": 6.0006,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.03,
|
853 |
+
"grad_norm": 4.357889872637869,
|
854 |
+
"learning_rate": 1.7855675032447648e-05,
|
855 |
+
"loss": 6.0577,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.03,
|
860 |
+
"grad_norm": 4.095191120284703,
|
861 |
+
"learning_rate": 1.7815429229500946e-05,
|
862 |
+
"loss": 5.9336,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.03,
|
867 |
+
"grad_norm": 4.736888424569404,
|
868 |
+
"learning_rate": 1.7774855506796497e-05,
|
869 |
+
"loss": 5.961,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.03,
|
874 |
+
"grad_norm": 9.32933189803368,
|
875 |
+
"learning_rate": 1.7733955566726438e-05,
|
876 |
+
"loss": 5.8729,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.03,
|
881 |
+
"grad_norm": 4.352013234575603,
|
882 |
+
"learning_rate": 1.7692731125370355e-05,
|
883 |
+
"loss": 5.9631,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.03,
|
888 |
+
"grad_norm": 4.0044514035329986,
|
889 |
+
"learning_rate": 1.7651183912423228e-05,
|
890 |
+
"loss": 6.0128,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.03,
|
895 |
+
"grad_norm": 4.158183905120493,
|
896 |
+
"learning_rate": 1.7609315671122912e-05,
|
897 |
+
"loss": 6.0247,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.03,
|
902 |
+
"grad_norm": 4.257943967689872,
|
903 |
+
"learning_rate": 1.7567128158176955e-05,
|
904 |
+
"loss": 6.2873,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.03,
|
909 |
+
"grad_norm": 4.1763697860525655,
|
910 |
+
"learning_rate": 1.7524623143688905e-05,
|
911 |
+
"loss": 5.9392,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.03,
|
916 |
+
"grad_norm": 3.9607955760999056,
|
917 |
+
"learning_rate": 1.748180241108404e-05,
|
918 |
+
"loss": 5.8487,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.03,
|
923 |
+
"grad_norm": 4.0896919573576875,
|
924 |
+
"learning_rate": 1.7438667757034547e-05,
|
925 |
+
"loss": 6.0042,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.03,
|
930 |
+
"grad_norm": 4.282944803020933,
|
931 |
+
"learning_rate": 1.739522099138411e-05,
|
932 |
+
"loss": 6.1652,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.03,
|
937 |
+
"grad_norm": 4.13081574380951,
|
938 |
+
"learning_rate": 1.7351463937072008e-05,
|
939 |
+
"loss": 6.0233,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.03,
|
944 |
+
"grad_norm": 4.96960839892131,
|
945 |
+
"learning_rate": 1.7307398430056595e-05,
|
946 |
+
"loss": 5.7853,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.03,
|
951 |
+
"grad_norm": 4.459520148451556,
|
952 |
+
"learning_rate": 1.72630263192383e-05,
|
953 |
+
"loss": 5.9414,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.03,
|
958 |
+
"grad_norm": 3.7882596771040893,
|
959 |
+
"learning_rate": 1.7218349466382024e-05,
|
960 |
+
"loss": 5.8131,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.03,
|
965 |
+
"grad_norm": 4.207888044625232,
|
966 |
+
"learning_rate": 1.7173369746039026e-05,
|
967 |
+
"loss": 5.8724,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.03,
|
972 |
+
"grad_norm": 3.6658140789192695,
|
973 |
+
"learning_rate": 1.7128089045468294e-05,
|
974 |
+
"loss": 5.9003,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.03,
|
979 |
+
"grad_norm": 3.7722042701323493,
|
980 |
+
"learning_rate": 1.7082509264557333e-05,
|
981 |
+
"loss": 5.8756,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.03,
|
986 |
+
"grad_norm": 4.8972909846842185,
|
987 |
+
"learning_rate": 1.7036632315742464e-05,
|
988 |
+
"loss": 6.0623,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.03,
|
993 |
+
"grad_norm": 3.703243911637958,
|
994 |
+
"learning_rate": 1.6990460123928577e-05,
|
995 |
+
"loss": 5.9731,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.03,
|
1000 |
+
"grad_norm": 4.040351904365242,
|
1001 |
+
"learning_rate": 1.6943994626408365e-05,
|
1002 |
+
"loss": 6.0629,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.03,
|
1007 |
+
"grad_norm": 7.5014912670407865,
|
1008 |
+
"learning_rate": 1.6897237772781046e-05,
|
1009 |
+
"loss": 5.945,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.03,
|
1014 |
+
"grad_norm": 4.183607320000293,
|
1015 |
+
"learning_rate": 1.6850191524870548e-05,
|
1016 |
+
"loss": 5.906,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.03,
|
1021 |
+
"grad_norm": 4.441179437405616,
|
1022 |
+
"learning_rate": 1.6802857856643214e-05,
|
1023 |
+
"loss": 5.9791,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.03,
|
1028 |
+
"grad_norm": 3.5946652188893187,
|
1029 |
+
"learning_rate": 1.6755238754124965e-05,
|
1030 |
+
"loss": 5.8481,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.03,
|
1035 |
+
"grad_norm": 5.030328438406491,
|
1036 |
+
"learning_rate": 1.6707336215317968e-05,
|
1037 |
+
"loss": 6.047,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.03,
|
1042 |
+
"grad_norm": 4.048177117370896,
|
1043 |
+
"learning_rate": 1.665915225011681e-05,
|
1044 |
+
"loss": 5.9285,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.03,
|
1049 |
+
"grad_norm": 4.299948019967649,
|
1050 |
+
"learning_rate": 1.6610688880224178e-05,
|
1051 |
+
"loss": 5.8888,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.03,
|
1056 |
+
"grad_norm": 4.095923631849489,
|
1057 |
+
"learning_rate": 1.6561948139065997e-05,
|
1058 |
+
"loss": 6.2453,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.03,
|
1063 |
+
"grad_norm": 3.481920812397553,
|
1064 |
+
"learning_rate": 1.6512932071706153e-05,
|
1065 |
+
"loss": 6.0019,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.03,
|
1070 |
+
"grad_norm": 4.3296848974625135,
|
1071 |
+
"learning_rate": 1.646364273476067e-05,
|
1072 |
+
"loss": 5.8587,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.04,
|
1077 |
+
"grad_norm": 3.947321316567111,
|
1078 |
+
"learning_rate": 1.6414082196311402e-05,
|
1079 |
+
"loss": 5.928,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.04,
|
1084 |
+
"grad_norm": 4.7243925766736705,
|
1085 |
+
"learning_rate": 1.6364252535819284e-05,
|
1086 |
+
"loss": 5.9007,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.04,
|
1091 |
+
"grad_norm": 13.974458344598341,
|
1092 |
+
"learning_rate": 1.6314155844037074e-05,
|
1093 |
+
"loss": 5.9754,
|
1094 |
+
"step": 155
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.04,
|
1098 |
+
"grad_norm": 4.17123392978259,
|
1099 |
+
"learning_rate": 1.626379422292162e-05,
|
1100 |
+
"loss": 5.8421,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.04,
|
1105 |
+
"grad_norm": 4.043820315204433,
|
1106 |
+
"learning_rate": 1.6213169785545688e-05,
|
1107 |
+
"loss": 5.9519,
|
1108 |
+
"step": 157
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.04,
|
1112 |
+
"grad_norm": 3.526011441047756,
|
1113 |
+
"learning_rate": 1.6162284656009276e-05,
|
1114 |
+
"loss": 5.8076,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.04,
|
1119 |
+
"grad_norm": 3.8459147008292724,
|
1120 |
+
"learning_rate": 1.6111140969350504e-05,
|
1121 |
+
"loss": 5.7672,
|
1122 |
+
"step": 159
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.04,
|
1126 |
+
"grad_norm": 3.562828950103298,
|
1127 |
+
"learning_rate": 1.6059740871456035e-05,
|
1128 |
+
"loss": 5.898,
|
1129 |
+
"step": 160
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.04,
|
1133 |
+
"grad_norm": 4.431960095480538,
|
1134 |
+
"learning_rate": 1.6008086518971037e-05,
|
1135 |
+
"loss": 5.7521,
|
1136 |
+
"step": 161
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.04,
|
1140 |
+
"grad_norm": 3.6428660471557737,
|
1141 |
+
"learning_rate": 1.5956180079208684e-05,
|
1142 |
+
"loss": 5.953,
|
1143 |
+
"step": 162
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.04,
|
1147 |
+
"grad_norm": 3.767661352257826,
|
1148 |
+
"learning_rate": 1.5904023730059227e-05,
|
1149 |
+
"loss": 6.0916,
|
1150 |
+
"step": 163
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.04,
|
1154 |
+
"grad_norm": 3.660701500822884,
|
1155 |
+
"learning_rate": 1.5851619659898623e-05,
|
1156 |
+
"loss": 5.8085,
|
1157 |
+
"step": 164
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.04,
|
1161 |
+
"grad_norm": 3.6310726747437143,
|
1162 |
+
"learning_rate": 1.57989700674967e-05,
|
1163 |
+
"loss": 5.8102,
|
1164 |
+
"step": 165
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.04,
|
1168 |
+
"grad_norm": 4.0023266213419495,
|
1169 |
+
"learning_rate": 1.5746077161924905e-05,
|
1170 |
+
"loss": 5.8879,
|
1171 |
+
"step": 166
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.04,
|
1175 |
+
"grad_norm": 3.99237095864865,
|
1176 |
+
"learning_rate": 1.5692943162463628e-05,
|
1177 |
+
"loss": 5.8366,
|
1178 |
+
"step": 167
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.04,
|
1182 |
+
"grad_norm": 3.5149347856437703,
|
1183 |
+
"learning_rate": 1.5639570298509067e-05,
|
1184 |
+
"loss": 5.7649,
|
1185 |
+
"step": 168
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.04,
|
1189 |
+
"grad_norm": 3.301730499203444,
|
1190 |
+
"learning_rate": 1.5585960809479698e-05,
|
1191 |
+
"loss": 5.9754,
|
1192 |
+
"step": 169
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.04,
|
1196 |
+
"grad_norm": 3.462115038986119,
|
1197 |
+
"learning_rate": 1.5532116944722308e-05,
|
1198 |
+
"loss": 5.6883,
|
1199 |
+
"step": 170
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.04,
|
1203 |
+
"grad_norm": 4.004970215448472,
|
1204 |
+
"learning_rate": 1.547804096341763e-05,
|
1205 |
+
"loss": 5.8396,
|
1206 |
+
"step": 171
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.04,
|
1210 |
+
"grad_norm": 3.944647631447267,
|
1211 |
+
"learning_rate": 1.5423735134485537e-05,
|
1212 |
+
"loss": 5.9988,
|
1213 |
+
"step": 172
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.04,
|
1217 |
+
"grad_norm": 3.5900984593685723,
|
1218 |
+
"learning_rate": 1.536920173648984e-05,
|
1219 |
+
"loss": 5.7239,
|
1220 |
+
"step": 173
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.04,
|
1224 |
+
"grad_norm": 3.6285904810079574,
|
1225 |
+
"learning_rate": 1.5314443057542703e-05,
|
1226 |
+
"loss": 5.8721,
|
1227 |
+
"step": 174
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.04,
|
1231 |
+
"grad_norm": 3.8894726151488843,
|
1232 |
+
"learning_rate": 1.5259461395208628e-05,
|
1233 |
+
"loss": 5.8299,
|
1234 |
+
"step": 175
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.04,
|
1238 |
+
"grad_norm": 3.5924238969723072,
|
1239 |
+
"learning_rate": 1.5204259056408046e-05,
|
1240 |
+
"loss": 5.9516,
|
1241 |
+
"step": 176
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.04,
|
1245 |
+
"grad_norm": 5.538554836605968,
|
1246 |
+
"learning_rate": 1.5148838357320537e-05,
|
1247 |
+
"loss": 5.8963,
|
1248 |
+
"step": 177
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.04,
|
1252 |
+
"grad_norm": 3.560612079271743,
|
1253 |
+
"learning_rate": 1.5093201623287631e-05,
|
1254 |
+
"loss": 5.888,
|
1255 |
+
"step": 178
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.04,
|
1259 |
+
"grad_norm": 3.467820770014584,
|
1260 |
+
"learning_rate": 1.5037351188715265e-05,
|
1261 |
+
"loss": 5.7864,
|
1262 |
+
"step": 179
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.04,
|
1266 |
+
"grad_norm": 4.172673845567331,
|
1267 |
+
"learning_rate": 1.4981289396975818e-05,
|
1268 |
+
"loss": 5.8498,
|
1269 |
+
"step": 180
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.04,
|
1273 |
+
"grad_norm": 3.1779411060929816,
|
1274 |
+
"learning_rate": 1.4925018600309784e-05,
|
1275 |
+
"loss": 5.6926,
|
1276 |
+
"step": 181
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 0.04,
|
1280 |
+
"grad_norm": 3.782675685637412,
|
1281 |
+
"learning_rate": 1.4868541159727097e-05,
|
1282 |
+
"loss": 5.6674,
|
1283 |
+
"step": 182
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.04,
|
1287 |
+
"grad_norm": 3.7799393833784296,
|
1288 |
+
"learning_rate": 1.4811859444908053e-05,
|
1289 |
+
"loss": 5.8661,
|
1290 |
+
"step": 183
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.04,
|
1294 |
+
"grad_norm": 4.487305708943541,
|
1295 |
+
"learning_rate": 1.4754975834103877e-05,
|
1296 |
+
"loss": 5.6999,
|
1297 |
+
"step": 184
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.04,
|
1301 |
+
"grad_norm": 6.107952099039134,
|
1302 |
+
"learning_rate": 1.4697892714036959e-05,
|
1303 |
+
"loss": 5.9596,
|
1304 |
+
"step": 185
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.04,
|
1308 |
+
"grad_norm": 3.897845235029772,
|
1309 |
+
"learning_rate": 1.4640612479800686e-05,
|
1310 |
+
"loss": 5.8336,
|
1311 |
+
"step": 186
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.04,
|
1315 |
+
"grad_norm": 3.574618642064676,
|
1316 |
+
"learning_rate": 1.4583137534758968e-05,
|
1317 |
+
"loss": 5.678,
|
1318 |
+
"step": 187
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 0.04,
|
1322 |
+
"grad_norm": 3.2767605854680717,
|
1323 |
+
"learning_rate": 1.4525470290445392e-05,
|
1324 |
+
"loss": 5.7779,
|
1325 |
+
"step": 188
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.04,
|
1329 |
+
"grad_norm": 3.3494797594069343,
|
1330 |
+
"learning_rate": 1.4467613166462024e-05,
|
1331 |
+
"loss": 5.6117,
|
1332 |
+
"step": 189
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.04,
|
1336 |
+
"grad_norm": 3.4560187160140114,
|
1337 |
+
"learning_rate": 1.4409568590377918e-05,
|
1338 |
+
"loss": 5.9744,
|
1339 |
+
"step": 190
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 0.04,
|
1343 |
+
"grad_norm": 5.124637343157441,
|
1344 |
+
"learning_rate": 1.4351338997627233e-05,
|
1345 |
+
"loss": 5.8884,
|
1346 |
+
"step": 191
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.04,
|
1350 |
+
"grad_norm": 4.802869734676735,
|
1351 |
+
"learning_rate": 1.429292683140706e-05,
|
1352 |
+
"loss": 5.8834,
|
1353 |
+
"step": 192
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.04,
|
1357 |
+
"grad_norm": 4.830747863900574,
|
1358 |
+
"learning_rate": 1.4234334542574906e-05,
|
1359 |
+
"loss": 5.8741,
|
1360 |
+
"step": 193
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 0.04,
|
1364 |
+
"grad_norm": 3.0222266779531313,
|
1365 |
+
"learning_rate": 1.4175564589545853e-05,
|
1366 |
+
"loss": 5.7957,
|
1367 |
+
"step": 194
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.04,
|
1371 |
+
"grad_norm": 3.7517853962161003,
|
1372 |
+
"learning_rate": 1.411661943818944e-05,
|
1373 |
+
"loss": 5.773,
|
1374 |
+
"step": 195
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.04,
|
1378 |
+
"grad_norm": 3.481751429815316,
|
1379 |
+
"learning_rate": 1.4057501561726157e-05,
|
1380 |
+
"loss": 5.79,
|
1381 |
+
"step": 196
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.05,
|
1385 |
+
"grad_norm": 4.032738430652106,
|
1386 |
+
"learning_rate": 1.3998213440623691e-05,
|
1387 |
+
"loss": 5.8233,
|
1388 |
+
"step": 197
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.05,
|
1392 |
+
"grad_norm": 4.3048433576019045,
|
1393 |
+
"learning_rate": 1.3938757562492873e-05,
|
1394 |
+
"loss": 5.7213,
|
1395 |
+
"step": 198
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.05,
|
1399 |
+
"grad_norm": 3.42093480136207,
|
1400 |
+
"learning_rate": 1.3879136421983265e-05,
|
1401 |
+
"loss": 5.6734,
|
1402 |
+
"step": 199
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.05,
|
1406 |
+
"grad_norm": 3.372940690507083,
|
1407 |
+
"learning_rate": 1.3819352520678519e-05,
|
1408 |
+
"loss": 5.8204,
|
1409 |
+
"step": 200
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.05,
|
1413 |
+
"grad_norm": 3.866414604706453,
|
1414 |
+
"learning_rate": 1.3759408366991391e-05,
|
1415 |
+
"loss": 5.7685,
|
1416 |
+
"step": 201
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 0.05,
|
1420 |
+
"grad_norm": 3.0437497252782015,
|
1421 |
+
"learning_rate": 1.3699306476058523e-05,
|
1422 |
+
"loss": 5.9321,
|
1423 |
+
"step": 202
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 0.05,
|
1427 |
+
"grad_norm": 3.5806152918043153,
|
1428 |
+
"learning_rate": 1.3639049369634878e-05,
|
1429 |
+
"loss": 5.6817,
|
1430 |
+
"step": 203
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.05,
|
1434 |
+
"grad_norm": 3.652624509453939,
|
1435 |
+
"learning_rate": 1.357863957598796e-05,
|
1436 |
+
"loss": 5.6123,
|
1437 |
+
"step": 204
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.05,
|
1441 |
+
"grad_norm": 3.2444221493972063,
|
1442 |
+
"learning_rate": 1.3518079629791725e-05,
|
1443 |
+
"loss": 5.5523,
|
1444 |
+
"step": 205
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 0.05,
|
1448 |
+
"grad_norm": 7.46063417126853,
|
1449 |
+
"learning_rate": 1.345737207202023e-05,
|
1450 |
+
"loss": 5.6855,
|
1451 |
+
"step": 206
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 0.05,
|
1455 |
+
"grad_norm": 3.3218441227109787,
|
1456 |
+
"learning_rate": 1.3396519449841006e-05,
|
1457 |
+
"loss": 5.7366,
|
1458 |
+
"step": 207
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.05,
|
1462 |
+
"grad_norm": 4.5944315284742725,
|
1463 |
+
"learning_rate": 1.3335524316508208e-05,
|
1464 |
+
"loss": 5.7278,
|
1465 |
+
"step": 208
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 0.05,
|
1469 |
+
"grad_norm": 3.0069349104091603,
|
1470 |
+
"learning_rate": 1.3274389231255466e-05,
|
1471 |
+
"loss": 5.7355,
|
1472 |
+
"step": 209
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.05,
|
1476 |
+
"grad_norm": 3.9317190820703756,
|
1477 |
+
"learning_rate": 1.3213116759188525e-05,
|
1478 |
+
"loss": 5.6806,
|
1479 |
+
"step": 210
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.05,
|
1483 |
+
"grad_norm": 3.33285104772104,
|
1484 |
+
"learning_rate": 1.3151709471177589e-05,
|
1485 |
+
"loss": 5.7708,
|
1486 |
+
"step": 211
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 0.05,
|
1490 |
+
"grad_norm": 3.6380751570471332,
|
1491 |
+
"learning_rate": 1.3090169943749475e-05,
|
1492 |
+
"loss": 5.8772,
|
1493 |
+
"step": 212
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 0.05,
|
1497 |
+
"grad_norm": 3.742526748849025,
|
1498 |
+
"learning_rate": 1.3028500758979507e-05,
|
1499 |
+
"loss": 5.6913,
|
1500 |
+
"step": 213
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 0.05,
|
1504 |
+
"grad_norm": 3.3393134329516196,
|
1505 |
+
"learning_rate": 1.296670450438317e-05,
|
1506 |
+
"loss": 5.5817,
|
1507 |
+
"step": 214
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 0.05,
|
1511 |
+
"grad_norm": 3.887935011194972,
|
1512 |
+
"learning_rate": 1.2904783772807534e-05,
|
1513 |
+
"loss": 5.6364,
|
1514 |
+
"step": 215
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.05,
|
1518 |
+
"grad_norm": 3.5742955487496175,
|
1519 |
+
"learning_rate": 1.2842741162322487e-05,
|
1520 |
+
"loss": 5.6486,
|
1521 |
+
"step": 216
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.05,
|
1525 |
+
"grad_norm": 3.2697917373453245,
|
1526 |
+
"learning_rate": 1.2780579276111702e-05,
|
1527 |
+
"loss": 5.7063,
|
1528 |
+
"step": 217
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 0.05,
|
1532 |
+
"grad_norm": 3.401421083396212,
|
1533 |
+
"learning_rate": 1.2718300722363431e-05,
|
1534 |
+
"loss": 5.7316,
|
1535 |
+
"step": 218
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 0.05,
|
1539 |
+
"grad_norm": 3.6121121716149887,
|
1540 |
+
"learning_rate": 1.2655908114161053e-05,
|
1541 |
+
"loss": 5.7758,
|
1542 |
+
"step": 219
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 0.05,
|
1546 |
+
"grad_norm": 3.2222903292023406,
|
1547 |
+
"learning_rate": 1.2593404069373452e-05,
|
1548 |
+
"loss": 5.7089,
|
1549 |
+
"step": 220
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 0.05,
|
1553 |
+
"grad_norm": 3.025802281634462,
|
1554 |
+
"learning_rate": 1.2530791210545163e-05,
|
1555 |
+
"loss": 5.6953,
|
1556 |
+
"step": 221
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.05,
|
1560 |
+
"grad_norm": 3.4673520664847075,
|
1561 |
+
"learning_rate": 1.2468072164786342e-05,
|
1562 |
+
"loss": 5.8728,
|
1563 |
+
"step": 222
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.05,
|
1567 |
+
"grad_norm": 3.6806603608994735,
|
1568 |
+
"learning_rate": 1.2405249563662539e-05,
|
1569 |
+
"loss": 5.669,
|
1570 |
+
"step": 223
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 0.05,
|
1574 |
+
"grad_norm": 4.64700420741913,
|
1575 |
+
"learning_rate": 1.2342326043084268e-05,
|
1576 |
+
"loss": 5.7352,
|
1577 |
+
"step": 224
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 0.05,
|
1581 |
+
"grad_norm": 3.0790982186864504,
|
1582 |
+
"learning_rate": 1.2279304243196438e-05,
|
1583 |
+
"loss": 5.5999,
|
1584 |
+
"step": 225
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 0.05,
|
1588 |
+
"grad_norm": 3.24646862661049,
|
1589 |
+
"learning_rate": 1.2216186808267544e-05,
|
1590 |
+
"loss": 5.668,
|
1591 |
+
"step": 226
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 0.05,
|
1595 |
+
"grad_norm": 3.1831196277858864,
|
1596 |
+
"learning_rate": 1.215297638657875e-05,
|
1597 |
+
"loss": 5.7959,
|
1598 |
+
"step": 227
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.05,
|
1602 |
+
"grad_norm": 3.4421555634435035,
|
1603 |
+
"learning_rate": 1.2089675630312755e-05,
|
1604 |
+
"loss": 5.6636,
|
1605 |
+
"step": 228
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.05,
|
1609 |
+
"grad_norm": 2.833448990477623,
|
1610 |
+
"learning_rate": 1.2026287195442503e-05,
|
1611 |
+
"loss": 5.5742,
|
1612 |
+
"step": 229
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 0.05,
|
1616 |
+
"grad_norm": 3.221649072609624,
|
1617 |
+
"learning_rate": 1.1962813741619777e-05,
|
1618 |
+
"loss": 5.7345,
|
1619 |
+
"step": 230
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 0.05,
|
1623 |
+
"grad_norm": 4.5576181124301,
|
1624 |
+
"learning_rate": 1.189925793206357e-05,
|
1625 |
+
"loss": 5.8758,
|
1626 |
+
"step": 231
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 0.05,
|
1630 |
+
"grad_norm": 3.1198515608939252,
|
1631 |
+
"learning_rate": 1.1835622433448361e-05,
|
1632 |
+
"loss": 5.7026,
|
1633 |
+
"step": 232
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 0.05,
|
1637 |
+
"grad_norm": 3.2391737753303063,
|
1638 |
+
"learning_rate": 1.177190991579223e-05,
|
1639 |
+
"loss": 5.8245,
|
1640 |
+
"step": 233
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.05,
|
1644 |
+
"grad_norm": 3.0415855629042006,
|
1645 |
+
"learning_rate": 1.1708123052344803e-05,
|
1646 |
+
"loss": 5.7423,
|
1647 |
+
"step": 234
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.05,
|
1651 |
+
"grad_norm": 3.417436664351836,
|
1652 |
+
"learning_rate": 1.164426451947513e-05,
|
1653 |
+
"loss": 5.7224,
|
1654 |
+
"step": 235
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 0.05,
|
1658 |
+
"grad_norm": 3.0428028654941963,
|
1659 |
+
"learning_rate": 1.1580336996559343e-05,
|
1660 |
+
"loss": 5.5215,
|
1661 |
+
"step": 236
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 0.05,
|
1665 |
+
"grad_norm": 3.2412878897803843,
|
1666 |
+
"learning_rate": 1.151634316586828e-05,
|
1667 |
+
"loss": 5.6753,
|
1668 |
+
"step": 237
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 0.05,
|
1672 |
+
"grad_norm": 2.9715981798900173,
|
1673 |
+
"learning_rate": 1.1452285712454905e-05,
|
1674 |
+
"loss": 5.6633,
|
1675 |
+
"step": 238
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 0.05,
|
1679 |
+
"grad_norm": 3.3507364284363375,
|
1680 |
+
"learning_rate": 1.138816732404167e-05,
|
1681 |
+
"loss": 5.7531,
|
1682 |
+
"step": 239
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.06,
|
1686 |
+
"grad_norm": 3.695763982565934,
|
1687 |
+
"learning_rate": 1.1323990690907734e-05,
|
1688 |
+
"loss": 5.6431,
|
1689 |
+
"step": 240
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.06,
|
1693 |
+
"grad_norm": 3.442076843360669,
|
1694 |
+
"learning_rate": 1.1259758505776092e-05,
|
1695 |
+
"loss": 5.763,
|
1696 |
+
"step": 241
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 0.06,
|
1700 |
+
"grad_norm": 3.4221454818185797,
|
1701 |
+
"learning_rate": 1.119547346370059e-05,
|
1702 |
+
"loss": 5.7121,
|
1703 |
+
"step": 242
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 0.06,
|
1707 |
+
"grad_norm": 32.81366795375805,
|
1708 |
+
"learning_rate": 1.1131138261952845e-05,
|
1709 |
+
"loss": 5.7642,
|
1710 |
+
"step": 243
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 0.06,
|
1714 |
+
"grad_norm": 2.824713348661609,
|
1715 |
+
"learning_rate": 1.1066755599909065e-05,
|
1716 |
+
"loss": 5.5872,
|
1717 |
+
"step": 244
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 0.06,
|
1721 |
+
"grad_norm": 3.2122840787719356,
|
1722 |
+
"learning_rate": 1.1002328178936813e-05,
|
1723 |
+
"loss": 5.6909,
|
1724 |
+
"step": 245
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.06,
|
1728 |
+
"grad_norm": 2.914139469492162,
|
1729 |
+
"learning_rate": 1.0937858702281631e-05,
|
1730 |
+
"loss": 5.5502,
|
1731 |
+
"step": 246
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.06,
|
1735 |
+
"grad_norm": 3.372671623706637,
|
1736 |
+
"learning_rate": 1.087334987495364e-05,
|
1737 |
+
"loss": 5.638,
|
1738 |
+
"step": 247
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 0.06,
|
1742 |
+
"grad_norm": 2.9794994417982705,
|
1743 |
+
"learning_rate": 1.0808804403614044e-05,
|
1744 |
+
"loss": 5.7327,
|
1745 |
+
"step": 248
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 0.06,
|
1749 |
+
"grad_norm": 3.545219321353326,
|
1750 |
+
"learning_rate": 1.0744224996461541e-05,
|
1751 |
+
"loss": 5.773,
|
1752 |
+
"step": 249
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 0.06,
|
1756 |
+
"grad_norm": 3.0509122712537904,
|
1757 |
+
"learning_rate": 1.0679614363118718e-05,
|
1758 |
+
"loss": 5.4833,
|
1759 |
+
"step": 250
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 0.06,
|
1763 |
+
"grad_norm": 3.1328946212391573,
|
1764 |
+
"learning_rate": 1.061497521451835e-05,
|
1765 |
+
"loss": 5.5846,
|
1766 |
+
"step": 251
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.06,
|
1770 |
+
"grad_norm": 2.912951012800422,
|
1771 |
+
"learning_rate": 1.055031026278965e-05,
|
1772 |
+
"loss": 5.7325,
|
1773 |
+
"step": 252
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.06,
|
1777 |
+
"grad_norm": 3.190063789344824,
|
1778 |
+
"learning_rate": 1.0485622221144485e-05,
|
1779 |
+
"loss": 5.6504,
|
1780 |
+
"step": 253
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 0.06,
|
1784 |
+
"grad_norm": 4.059074907434253,
|
1785 |
+
"learning_rate": 1.0420913803763522e-05,
|
1786 |
+
"loss": 5.5256,
|
1787 |
+
"step": 254
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 0.06,
|
1791 |
+
"grad_norm": 3.2665977095269763,
|
1792 |
+
"learning_rate": 1.0356187725682359e-05,
|
1793 |
+
"loss": 5.6545,
|
1794 |
+
"step": 255
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 0.06,
|
1798 |
+
"grad_norm": 2.8731971309590723,
|
1799 |
+
"learning_rate": 1.0291446702677598e-05,
|
1800 |
+
"loss": 5.4238,
|
1801 |
+
"step": 256
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 0.06,
|
1805 |
+
"grad_norm": 5.960836799262505,
|
1806 |
+
"learning_rate": 1.02266934511529e-05,
|
1807 |
+
"loss": 5.601,
|
1808 |
+
"step": 257
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 0.06,
|
1812 |
+
"grad_norm": 3.479663130288781,
|
1813 |
+
"learning_rate": 1.0161930688025018e-05,
|
1814 |
+
"loss": 5.49,
|
1815 |
+
"step": 258
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.06,
|
1819 |
+
"grad_norm": 3.458943691824299,
|
1820 |
+
"learning_rate": 1.0097161130609774e-05,
|
1821 |
+
"loss": 5.7461,
|
1822 |
+
"step": 259
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 0.06,
|
1826 |
+
"grad_norm": 3.279222709074338,
|
1827 |
+
"learning_rate": 1.003238749650809e-05,
|
1828 |
+
"loss": 5.5439,
|
1829 |
+
"step": 260
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 0.06,
|
1833 |
+
"grad_norm": 5.311427762294207,
|
1834 |
+
"learning_rate": 9.967612503491915e-06,
|
1835 |
+
"loss": 5.5148,
|
1836 |
+
"step": 261
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 0.06,
|
1840 |
+
"grad_norm": 2.887421444069423,
|
1841 |
+
"learning_rate": 9.90283886939023e-06,
|
1842 |
+
"loss": 5.4186,
|
1843 |
+
"step": 262
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 0.06,
|
1847 |
+
"grad_norm": 4.401386334484841,
|
1848 |
+
"learning_rate": 9.838069311974986e-06,
|
1849 |
+
"loss": 5.6778,
|
1850 |
+
"step": 263
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.06,
|
1854 |
+
"grad_norm": 2.6023206995102135,
|
1855 |
+
"learning_rate": 9.773306548847102e-06,
|
1856 |
+
"loss": 5.6155,
|
1857 |
+
"step": 264
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.06,
|
1861 |
+
"grad_norm": 3.593734709591131,
|
1862 |
+
"learning_rate": 9.708553297322407e-06,
|
1863 |
+
"loss": 5.6777,
|
1864 |
+
"step": 265
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 0.06,
|
1868 |
+
"grad_norm": 3.477325665085784,
|
1869 |
+
"learning_rate": 9.643812274317644e-06,
|
1870 |
+
"loss": 5.5781,
|
1871 |
+
"step": 266
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 0.06,
|
1875 |
+
"grad_norm": 2.8887444330887266,
|
1876 |
+
"learning_rate": 9.579086196236483e-06,
|
1877 |
+
"loss": 5.7172,
|
1878 |
+
"step": 267
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 0.06,
|
1882 |
+
"grad_norm": 3.8360288485375484,
|
1883 |
+
"learning_rate": 9.514377778855521e-06,
|
1884 |
+
"loss": 5.5803,
|
1885 |
+
"step": 268
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 0.06,
|
1889 |
+
"grad_norm": 3.135597210733372,
|
1890 |
+
"learning_rate": 9.449689737210352e-06,
|
1891 |
+
"loss": 5.7742,
|
1892 |
+
"step": 269
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 0.06,
|
1896 |
+
"grad_norm": 3.0578215352523745,
|
1897 |
+
"learning_rate": 9.385024785481653e-06,
|
1898 |
+
"loss": 5.5618,
|
1899 |
+
"step": 270
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.06,
|
1903 |
+
"grad_norm": 2.925737489172214,
|
1904 |
+
"learning_rate": 9.320385636881283e-06,
|
1905 |
+
"loss": 5.6728,
|
1906 |
+
"step": 271
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 0.06,
|
1910 |
+
"grad_norm": 3.429796358511194,
|
1911 |
+
"learning_rate": 9.255775003538462e-06,
|
1912 |
+
"loss": 5.7857,
|
1913 |
+
"step": 272
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 0.06,
|
1917 |
+
"grad_norm": 3.1866968840925742,
|
1918 |
+
"learning_rate": 9.19119559638596e-06,
|
1919 |
+
"loss": 5.504,
|
1920 |
+
"step": 273
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 0.06,
|
1924 |
+
"grad_norm": 3.199919489689139,
|
1925 |
+
"learning_rate": 9.126650125046361e-06,
|
1926 |
+
"loss": 5.6548,
|
1927 |
+
"step": 274
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 0.06,
|
1931 |
+
"grad_norm": 6.644972124408221,
|
1932 |
+
"learning_rate": 9.062141297718372e-06,
|
1933 |
+
"loss": 5.7688,
|
1934 |
+
"step": 275
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 0.06,
|
1938 |
+
"grad_norm": 2.840251387463206,
|
1939 |
+
"learning_rate": 8.99767182106319e-06,
|
1940 |
+
"loss": 5.5356,
|
1941 |
+
"step": 276
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.06,
|
1945 |
+
"grad_norm": 2.847024195497787,
|
1946 |
+
"learning_rate": 8.933244400090937e-06,
|
1947 |
+
"loss": 5.538,
|
1948 |
+
"step": 277
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 0.06,
|
1952 |
+
"grad_norm": 4.300138770028974,
|
1953 |
+
"learning_rate": 8.868861738047158e-06,
|
1954 |
+
"loss": 5.5466,
|
1955 |
+
"step": 278
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 0.06,
|
1959 |
+
"grad_norm": 3.2598992072099806,
|
1960 |
+
"learning_rate": 8.804526536299413e-06,
|
1961 |
+
"loss": 5.5438,
|
1962 |
+
"step": 279
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 0.06,
|
1966 |
+
"grad_norm": 2.9223921302516205,
|
1967 |
+
"learning_rate": 8.740241494223911e-06,
|
1968 |
+
"loss": 5.5199,
|
1969 |
+
"step": 280
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 0.06,
|
1973 |
+
"grad_norm": 2.7228943907903944,
|
1974 |
+
"learning_rate": 8.676009309092273e-06,
|
1975 |
+
"loss": 5.316,
|
1976 |
+
"step": 281
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 0.06,
|
1980 |
+
"grad_norm": 3.151284881347976,
|
1981 |
+
"learning_rate": 8.611832675958335e-06,
|
1982 |
+
"loss": 5.605,
|
1983 |
+
"step": 282
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 0.06,
|
1987 |
+
"grad_norm": 2.971020945163525,
|
1988 |
+
"learning_rate": 8.5477142875451e-06,
|
1989 |
+
"loss": 5.5074,
|
1990 |
+
"step": 283
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 0.07,
|
1994 |
+
"grad_norm": 3.383598237834473,
|
1995 |
+
"learning_rate": 8.48365683413172e-06,
|
1996 |
+
"loss": 5.6454,
|
1997 |
+
"step": 284
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 0.07,
|
2001 |
+
"grad_norm": 3.1708795210472065,
|
2002 |
+
"learning_rate": 8.419663003440657e-06,
|
2003 |
+
"loss": 5.6293,
|
2004 |
+
"step": 285
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 0.07,
|
2008 |
+
"grad_norm": 3.0060809846941523,
|
2009 |
+
"learning_rate": 8.355735480524874e-06,
|
2010 |
+
"loss": 5.7011,
|
2011 |
+
"step": 286
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 0.07,
|
2015 |
+
"grad_norm": 3.082555191182687,
|
2016 |
+
"learning_rate": 8.291876947655197e-06,
|
2017 |
+
"loss": 5.5058,
|
2018 |
+
"step": 287
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 0.07,
|
2022 |
+
"grad_norm": 3.1290655800212988,
|
2023 |
+
"learning_rate": 8.228090084207773e-06,
|
2024 |
+
"loss": 5.6645,
|
2025 |
+
"step": 288
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 0.07,
|
2029 |
+
"grad_norm": 3.6512062285821107,
|
2030 |
+
"learning_rate": 8.16437756655164e-06,
|
2031 |
+
"loss": 5.632,
|
2032 |
+
"step": 289
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 0.07,
|
2036 |
+
"grad_norm": 5.580032474883606,
|
2037 |
+
"learning_rate": 8.100742067936432e-06,
|
2038 |
+
"loss": 5.6529,
|
2039 |
+
"step": 290
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 0.07,
|
2043 |
+
"grad_norm": 2.8279735010912828,
|
2044 |
+
"learning_rate": 8.037186258380226e-06,
|
2045 |
+
"loss": 5.653,
|
2046 |
+
"step": 291
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 0.07,
|
2050 |
+
"grad_norm": 3.0485365662315185,
|
2051 |
+
"learning_rate": 7.9737128045575e-06,
|
2052 |
+
"loss": 5.6271,
|
2053 |
+
"step": 292
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 0.07,
|
2057 |
+
"grad_norm": 2.9000686534385065,
|
2058 |
+
"learning_rate": 7.91032436968725e-06,
|
2059 |
+
"loss": 5.497,
|
2060 |
+
"step": 293
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.07,
|
2064 |
+
"grad_norm": 3.7477894288698823,
|
2065 |
+
"learning_rate": 7.847023613421251e-06,
|
2066 |
+
"loss": 5.6454,
|
2067 |
+
"step": 294
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.07,
|
2071 |
+
"grad_norm": 3.1406780416239988,
|
2072 |
+
"learning_rate": 7.78381319173246e-06,
|
2073 |
+
"loss": 5.702,
|
2074 |
+
"step": 295
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 0.07,
|
2078 |
+
"grad_norm": 2.8819040313896664,
|
2079 |
+
"learning_rate": 7.720695756803569e-06,
|
2080 |
+
"loss": 5.5487,
|
2081 |
+
"step": 296
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 0.07,
|
2085 |
+
"grad_norm": 3.1093053507455433,
|
2086 |
+
"learning_rate": 7.657673956915735e-06,
|
2087 |
+
"loss": 5.6263,
|
2088 |
+
"step": 297
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 0.07,
|
2092 |
+
"grad_norm": 3.532080902497016,
|
2093 |
+
"learning_rate": 7.594750436337467e-06,
|
2094 |
+
"loss": 5.7086,
|
2095 |
+
"step": 298
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 0.07,
|
2099 |
+
"grad_norm": 2.9271604989314417,
|
2100 |
+
"learning_rate": 7.531927835213657e-06,
|
2101 |
+
"loss": 5.5651,
|
2102 |
+
"step": 299
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.07,
|
2106 |
+
"grad_norm": 3.9573677159990344,
|
2107 |
+
"learning_rate": 7.469208789454838e-06,
|
2108 |
+
"loss": 5.6534,
|
2109 |
+
"step": 300
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.07,
|
2113 |
+
"grad_norm": 2.813452933446664,
|
2114 |
+
"learning_rate": 7.40659593062655e-06,
|
2115 |
+
"loss": 5.5948,
|
2116 |
+
"step": 301
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 0.07,
|
2120 |
+
"grad_norm": 3.64918124403021,
|
2121 |
+
"learning_rate": 7.344091885838949e-06,
|
2122 |
+
"loss": 5.833,
|
2123 |
+
"step": 302
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 0.07,
|
2127 |
+
"grad_norm": 8.447026127108531,
|
2128 |
+
"learning_rate": 7.2816992776365714e-06,
|
2129 |
+
"loss": 5.6345,
|
2130 |
+
"step": 303
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 0.07,
|
2134 |
+
"grad_norm": 3.487783377440865,
|
2135 |
+
"learning_rate": 7.219420723888301e-06,
|
2136 |
+
"loss": 5.5796,
|
2137 |
+
"step": 304
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 0.07,
|
2141 |
+
"grad_norm": 3.3746557421600545,
|
2142 |
+
"learning_rate": 7.157258837677514e-06,
|
2143 |
+
"loss": 5.4475,
|
2144 |
+
"step": 305
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.07,
|
2148 |
+
"grad_norm": 3.109170816456849,
|
2149 |
+
"learning_rate": 7.095216227192467e-06,
|
2150 |
+
"loss": 5.4312,
|
2151 |
+
"step": 306
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.07,
|
2155 |
+
"grad_norm": 3.5209993320764634,
|
2156 |
+
"learning_rate": 7.033295495616834e-06,
|
2157 |
+
"loss": 5.6655,
|
2158 |
+
"step": 307
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 0.07,
|
2162 |
+
"grad_norm": 3.7885132212833215,
|
2163 |
+
"learning_rate": 6.971499241020495e-06,
|
2164 |
+
"loss": 5.5506,
|
2165 |
+
"step": 308
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 0.07,
|
2169 |
+
"grad_norm": 2.8035280155793902,
|
2170 |
+
"learning_rate": 6.909830056250527e-06,
|
2171 |
+
"loss": 5.5899,
|
2172 |
+
"step": 309
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 0.07,
|
2176 |
+
"grad_norm": 3.3096990722045665,
|
2177 |
+
"learning_rate": 6.848290528822417e-06,
|
2178 |
+
"loss": 5.5894,
|
2179 |
+
"step": 310
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 0.07,
|
2183 |
+
"grad_norm": 3.1035770416615245,
|
2184 |
+
"learning_rate": 6.786883240811479e-06,
|
2185 |
+
"loss": 5.5137,
|
2186 |
+
"step": 311
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.07,
|
2190 |
+
"grad_norm": 2.934891742489131,
|
2191 |
+
"learning_rate": 6.725610768744535e-06,
|
2192 |
+
"loss": 5.5028,
|
2193 |
+
"step": 312
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 0.07,
|
2197 |
+
"grad_norm": 3.371896210185273,
|
2198 |
+
"learning_rate": 6.664475683491797e-06,
|
2199 |
+
"loss": 5.5001,
|
2200 |
+
"step": 313
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"epoch": 0.07,
|
2204 |
+
"grad_norm": 2.8035512763165222,
|
2205 |
+
"learning_rate": 6.603480550158995e-06,
|
2206 |
+
"loss": 5.6237,
|
2207 |
+
"step": 314
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 0.07,
|
2211 |
+
"grad_norm": 4.14158466178092,
|
2212 |
+
"learning_rate": 6.542627927979772e-06,
|
2213 |
+
"loss": 5.6736,
|
2214 |
+
"step": 315
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 0.07,
|
2218 |
+
"grad_norm": 2.972559988613375,
|
2219 |
+
"learning_rate": 6.481920370208274e-06,
|
2220 |
+
"loss": 5.6447,
|
2221 |
+
"step": 316
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 0.07,
|
2225 |
+
"grad_norm": 3.411613112123063,
|
2226 |
+
"learning_rate": 6.421360424012039e-06,
|
2227 |
+
"loss": 5.7263,
|
2228 |
+
"step": 317
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 0.07,
|
2232 |
+
"grad_norm": 2.8412153634814308,
|
2233 |
+
"learning_rate": 6.360950630365126e-06,
|
2234 |
+
"loss": 5.5072,
|
2235 |
+
"step": 318
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 0.07,
|
2239 |
+
"grad_norm": 3.376692187351766,
|
2240 |
+
"learning_rate": 6.300693523941481e-06,
|
2241 |
+
"loss": 5.6328,
|
2242 |
+
"step": 319
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"epoch": 0.07,
|
2246 |
+
"grad_norm": 2.950706203004661,
|
2247 |
+
"learning_rate": 6.2405916330086106e-06,
|
2248 |
+
"loss": 5.606,
|
2249 |
+
"step": 320
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 0.07,
|
2253 |
+
"grad_norm": 3.6164997018204152,
|
2254 |
+
"learning_rate": 6.180647479321484e-06,
|
2255 |
+
"loss": 5.7159,
|
2256 |
+
"step": 321
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 0.07,
|
2260 |
+
"grad_norm": 2.6776792490163492,
|
2261 |
+
"learning_rate": 6.120863578016736e-06,
|
2262 |
+
"loss": 5.4034,
|
2263 |
+
"step": 322
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"epoch": 0.07,
|
2267 |
+
"grad_norm": 2.8823500476883783,
|
2268 |
+
"learning_rate": 6.061242437507131e-06,
|
2269 |
+
"loss": 5.5799,
|
2270 |
+
"step": 323
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 0.07,
|
2274 |
+
"grad_norm": 2.7310153497627305,
|
2275 |
+
"learning_rate": 6.00178655937631e-06,
|
2276 |
+
"loss": 5.4403,
|
2277 |
+
"step": 324
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 0.07,
|
2281 |
+
"grad_norm": 2.8043161109289105,
|
2282 |
+
"learning_rate": 5.942498438273849e-06,
|
2283 |
+
"loss": 5.5201,
|
2284 |
+
"step": 325
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"epoch": 0.07,
|
2288 |
+
"grad_norm": 2.6257376922078577,
|
2289 |
+
"learning_rate": 5.8833805618105635e-06,
|
2290 |
+
"loss": 5.5161,
|
2291 |
+
"step": 326
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 0.07,
|
2295 |
+
"grad_norm": 3.100365890406591,
|
2296 |
+
"learning_rate": 5.82443541045415e-06,
|
2297 |
+
"loss": 5.4591,
|
2298 |
+
"step": 327
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 0.08,
|
2302 |
+
"grad_norm": 3.164224570414931,
|
2303 |
+
"learning_rate": 5.765665457425102e-06,
|
2304 |
+
"loss": 5.5032,
|
2305 |
+
"step": 328
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 0.08,
|
2309 |
+
"grad_norm": 2.8688071534260713,
|
2310 |
+
"learning_rate": 5.707073168592943e-06,
|
2311 |
+
"loss": 5.6875,
|
2312 |
+
"step": 329
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 0.08,
|
2316 |
+
"grad_norm": 2.9334355868792925,
|
2317 |
+
"learning_rate": 5.648661002372769e-06,
|
2318 |
+
"loss": 5.4918,
|
2319 |
+
"step": 330
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 0.08,
|
2323 |
+
"grad_norm": 2.618203487365493,
|
2324 |
+
"learning_rate": 5.590431409622081e-06,
|
2325 |
+
"loss": 5.6324,
|
2326 |
+
"step": 331
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 0.08,
|
2330 |
+
"grad_norm": 2.7468055145560473,
|
2331 |
+
"learning_rate": 5.5323868335379775e-06,
|
2332 |
+
"loss": 5.5696,
|
2333 |
+
"step": 332
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 0.08,
|
2337 |
+
"grad_norm": 2.945148993510563,
|
2338 |
+
"learning_rate": 5.4745297095546125e-06,
|
2339 |
+
"loss": 5.6865,
|
2340 |
+
"step": 333
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 0.08,
|
2344 |
+
"grad_norm": 4.27286874096374,
|
2345 |
+
"learning_rate": 5.416862465241033e-06,
|
2346 |
+
"loss": 5.574,
|
2347 |
+
"step": 334
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"epoch": 0.08,
|
2351 |
+
"grad_norm": 3.075467269510141,
|
2352 |
+
"learning_rate": 5.359387520199317e-06,
|
2353 |
+
"loss": 5.4386,
|
2354 |
+
"step": 335
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 0.08,
|
2358 |
+
"grad_norm": 12.979333973830173,
|
2359 |
+
"learning_rate": 5.302107285963045e-06,
|
2360 |
+
"loss": 5.5171,
|
2361 |
+
"step": 336
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 0.08,
|
2365 |
+
"grad_norm": 2.946796474047621,
|
2366 |
+
"learning_rate": 5.245024165896126e-06,
|
2367 |
+
"loss": 5.4337,
|
2368 |
+
"step": 337
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"epoch": 0.08,
|
2372 |
+
"grad_norm": 47.491660622837905,
|
2373 |
+
"learning_rate": 5.18814055509195e-06,
|
2374 |
+
"loss": 5.3093,
|
2375 |
+
"step": 338
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 0.08,
|
2379 |
+
"grad_norm": 2.6684688936423306,
|
2380 |
+
"learning_rate": 5.131458840272905e-06,
|
2381 |
+
"loss": 5.4504,
|
2382 |
+
"step": 339
|
2383 |
+
},
|
2384 |
+
{
|
2385 |
+
"epoch": 0.08,
|
2386 |
+
"grad_norm": 2.9524813775023664,
|
2387 |
+
"learning_rate": 5.074981399690219e-06,
|
2388 |
+
"loss": 5.6183,
|
2389 |
+
"step": 340
|
2390 |
+
},
|
2391 |
+
{
|
2392 |
+
"epoch": 0.08,
|
2393 |
+
"grad_norm": 3.071692317071865,
|
2394 |
+
"learning_rate": 5.018710603024187e-06,
|
2395 |
+
"loss": 5.8018,
|
2396 |
+
"step": 341
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 0.08,
|
2400 |
+
"grad_norm": 2.8943426237790604,
|
2401 |
+
"learning_rate": 4.9626488112847384e-06,
|
2402 |
+
"loss": 5.5124,
|
2403 |
+
"step": 342
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 0.08,
|
2407 |
+
"grad_norm": 3.643486862482141,
|
2408 |
+
"learning_rate": 4.9067983767123736e-06,
|
2409 |
+
"loss": 5.6324,
|
2410 |
+
"step": 343
|
2411 |
+
},
|
2412 |
+
{
|
2413 |
+
"epoch": 0.08,
|
2414 |
+
"grad_norm": 3.0446879911014793,
|
2415 |
+
"learning_rate": 4.851161642679466e-06,
|
2416 |
+
"loss": 5.5722,
|
2417 |
+
"step": 344
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 0.08,
|
2421 |
+
"grad_norm": 3.0223614188577583,
|
2422 |
+
"learning_rate": 4.795740943591955e-06,
|
2423 |
+
"loss": 5.6997,
|
2424 |
+
"step": 345
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 0.08,
|
2428 |
+
"grad_norm": 3.139884095364713,
|
2429 |
+
"learning_rate": 4.740538604791371e-06,
|
2430 |
+
"loss": 5.6098,
|
2431 |
+
"step": 346
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 0.08,
|
2435 |
+
"grad_norm": 3.0355695744448905,
|
2436 |
+
"learning_rate": 4.685556942457296e-06,
|
2437 |
+
"loss": 5.5642,
|
2438 |
+
"step": 347
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 0.08,
|
2442 |
+
"grad_norm": 3.2148124769621145,
|
2443 |
+
"learning_rate": 4.630798263510162e-06,
|
2444 |
+
"loss": 5.4686,
|
2445 |
+
"step": 348
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 0.08,
|
2449 |
+
"grad_norm": 6.599100924296892,
|
2450 |
+
"learning_rate": 4.576264865514467e-06,
|
2451 |
+
"loss": 5.6283,
|
2452 |
+
"step": 349
|
2453 |
+
},
|
2454 |
+
{
|
2455 |
+
"epoch": 0.08,
|
2456 |
+
"grad_norm": 3.176903096047862,
|
2457 |
+
"learning_rate": 4.521959036582372e-06,
|
2458 |
+
"loss": 5.6207,
|
2459 |
+
"step": 350
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 0.08,
|
2463 |
+
"grad_norm": 2.7882598761964217,
|
2464 |
+
"learning_rate": 4.467883055277696e-06,
|
2465 |
+
"loss": 5.4235,
|
2466 |
+
"step": 351
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"epoch": 0.08,
|
2470 |
+
"grad_norm": 3.4794420663108894,
|
2471 |
+
"learning_rate": 4.414039190520308e-06,
|
2472 |
+
"loss": 5.5631,
|
2473 |
+
"step": 352
|
2474 |
+
},
|
2475 |
+
{
|
2476 |
+
"epoch": 0.08,
|
2477 |
+
"grad_norm": 2.903622461402484,
|
2478 |
+
"learning_rate": 4.360429701490935e-06,
|
2479 |
+
"loss": 5.6318,
|
2480 |
+
"step": 353
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 0.08,
|
2484 |
+
"grad_norm": 7.699211582040187,
|
2485 |
+
"learning_rate": 4.307056837536373e-06,
|
2486 |
+
"loss": 5.7193,
|
2487 |
+
"step": 354
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 0.08,
|
2491 |
+
"grad_norm": 3.637017761567808,
|
2492 |
+
"learning_rate": 4.2539228380750955e-06,
|
2493 |
+
"loss": 5.6718,
|
2494 |
+
"step": 355
|
2495 |
+
},
|
2496 |
+
{
|
2497 |
+
"epoch": 0.08,
|
2498 |
+
"grad_norm": 3.871928827914661,
|
2499 |
+
"learning_rate": 4.201029932503303e-06,
|
2500 |
+
"loss": 5.5911,
|
2501 |
+
"step": 356
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 0.08,
|
2505 |
+
"grad_norm": 3.373623961352284,
|
2506 |
+
"learning_rate": 4.14838034010138e-06,
|
2507 |
+
"loss": 5.6983,
|
2508 |
+
"step": 357
|
2509 |
+
},
|
2510 |
+
{
|
2511 |
+
"epoch": 0.08,
|
2512 |
+
"grad_norm": 2.7039462572520025,
|
2513 |
+
"learning_rate": 4.095976269940777e-06,
|
2514 |
+
"loss": 5.4657,
|
2515 |
+
"step": 358
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"epoch": 0.08,
|
2519 |
+
"grad_norm": 2.906259270274048,
|
2520 |
+
"learning_rate": 4.043819920791322e-06,
|
2521 |
+
"loss": 5.6059,
|
2522 |
+
"step": 359
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 0.08,
|
2526 |
+
"grad_norm": 2.80215901884808,
|
2527 |
+
"learning_rate": 3.991913481028965e-06,
|
2528 |
+
"loss": 5.3867,
|
2529 |
+
"step": 360
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 0.08,
|
2533 |
+
"grad_norm": 2.7611740391342763,
|
2534 |
+
"learning_rate": 3.940259128543967e-06,
|
2535 |
+
"loss": 5.6265,
|
2536 |
+
"step": 361
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 0.08,
|
2540 |
+
"grad_norm": 3.496220876703193,
|
2541 |
+
"learning_rate": 3.888859030649498e-06,
|
2542 |
+
"loss": 5.7369,
|
2543 |
+
"step": 362
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 0.08,
|
2547 |
+
"grad_norm": 3.069627191877829,
|
2548 |
+
"learning_rate": 3.837715343990727e-06,
|
2549 |
+
"loss": 5.6878,
|
2550 |
+
"step": 363
|
2551 |
+
},
|
2552 |
+
{
|
2553 |
+
"epoch": 0.08,
|
2554 |
+
"grad_norm": 2.8861264690211628,
|
2555 |
+
"learning_rate": 3.7868302144543146e-06,
|
2556 |
+
"loss": 5.6452,
|
2557 |
+
"step": 364
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"epoch": 0.08,
|
2561 |
+
"grad_norm": 2.973826787518843,
|
2562 |
+
"learning_rate": 3.736205777078381e-06,
|
2563 |
+
"loss": 5.4028,
|
2564 |
+
"step": 365
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 0.08,
|
2568 |
+
"grad_norm": 2.9173591380715704,
|
2569 |
+
"learning_rate": 3.685844155962931e-06,
|
2570 |
+
"loss": 5.5656,
|
2571 |
+
"step": 366
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 0.08,
|
2575 |
+
"grad_norm": 3.147705831696598,
|
2576 |
+
"learning_rate": 3.63574746418072e-06,
|
2577 |
+
"loss": 5.5783,
|
2578 |
+
"step": 367
|
2579 |
+
},
|
2580 |
+
{
|
2581 |
+
"epoch": 0.08,
|
2582 |
+
"grad_norm": 3.072248624553244,
|
2583 |
+
"learning_rate": 3.585917803688603e-06,
|
2584 |
+
"loss": 5.539,
|
2585 |
+
"step": 368
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"epoch": 0.08,
|
2589 |
+
"grad_norm": 2.7322222965861336,
|
2590 |
+
"learning_rate": 3.536357265239333e-06,
|
2591 |
+
"loss": 5.4976,
|
2592 |
+
"step": 369
|
2593 |
+
},
|
2594 |
+
{
|
2595 |
+
"epoch": 0.08,
|
2596 |
+
"grad_norm": 2.658079903087022,
|
2597 |
+
"learning_rate": 3.487067928293848e-06,
|
2598 |
+
"loss": 5.4221,
|
2599 |
+
"step": 370
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"epoch": 0.09,
|
2603 |
+
"grad_norm": 2.680370794084422,
|
2604 |
+
"learning_rate": 3.4380518609340076e-06,
|
2605 |
+
"loss": 5.5785,
|
2606 |
+
"step": 371
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 0.09,
|
2610 |
+
"grad_norm": 2.89315062272381,
|
2611 |
+
"learning_rate": 3.3893111197758276e-06,
|
2612 |
+
"loss": 5.4699,
|
2613 |
+
"step": 372
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 0.09,
|
2617 |
+
"grad_norm": 3.088114743299729,
|
2618 |
+
"learning_rate": 3.3408477498831917e-06,
|
2619 |
+
"loss": 5.5848,
|
2620 |
+
"step": 373
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"epoch": 0.09,
|
2624 |
+
"grad_norm": 3.3744405750175783,
|
2625 |
+
"learning_rate": 3.2926637846820366e-06,
|
2626 |
+
"loss": 5.5855,
|
2627 |
+
"step": 374
|
2628 |
+
},
|
2629 |
+
{
|
2630 |
+
"epoch": 0.09,
|
2631 |
+
"grad_norm": 3.0949682435479815,
|
2632 |
+
"learning_rate": 3.2447612458750365e-06,
|
2633 |
+
"loss": 5.5665,
|
2634 |
+
"step": 375
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 0.09,
|
2638 |
+
"grad_norm": 3.5298918745049064,
|
2639 |
+
"learning_rate": 3.197142143356787e-06,
|
2640 |
+
"loss": 5.4282,
|
2641 |
+
"step": 376
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 0.09,
|
2645 |
+
"grad_norm": 2.3415078853618483,
|
2646 |
+
"learning_rate": 3.1498084751294523e-06,
|
2647 |
+
"loss": 5.548,
|
2648 |
+
"step": 377
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 0.09,
|
2652 |
+
"grad_norm": 2.6530303000947377,
|
2653 |
+
"learning_rate": 3.1027622272189572e-06,
|
2654 |
+
"loss": 5.4614,
|
2655 |
+
"step": 378
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 0.09,
|
2659 |
+
"grad_norm": 2.6198793225005095,
|
2660 |
+
"learning_rate": 3.0560053735916372e-06,
|
2661 |
+
"loss": 5.3387,
|
2662 |
+
"step": 379
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 0.09,
|
2666 |
+
"grad_norm": 3.253733908459485,
|
2667 |
+
"learning_rate": 3.009539876071427e-06,
|
2668 |
+
"loss": 5.5892,
|
2669 |
+
"step": 380
|
2670 |
+
},
|
2671 |
+
{
|
2672 |
+
"epoch": 0.09,
|
2673 |
+
"grad_norm": 2.893078721591448,
|
2674 |
+
"learning_rate": 2.9633676842575386e-06,
|
2675 |
+
"loss": 5.5098,
|
2676 |
+
"step": 381
|
2677 |
+
},
|
2678 |
+
{
|
2679 |
+
"epoch": 0.09,
|
2680 |
+
"grad_norm": 3.2332247538663927,
|
2681 |
+
"learning_rate": 2.9174907354426696e-06,
|
2682 |
+
"loss": 5.611,
|
2683 |
+
"step": 382
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"epoch": 0.09,
|
2687 |
+
"grad_norm": 3.717694710480861,
|
2688 |
+
"learning_rate": 2.8719109545317102e-06,
|
2689 |
+
"loss": 5.7531,
|
2690 |
+
"step": 383
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 0.09,
|
2694 |
+
"grad_norm": 5.973350020162763,
|
2695 |
+
"learning_rate": 2.8266302539609747e-06,
|
2696 |
+
"loss": 5.5053,
|
2697 |
+
"step": 384
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 0.09,
|
2701 |
+
"grad_norm": 3.106939977808064,
|
2702 |
+
"learning_rate": 2.78165053361798e-06,
|
2703 |
+
"loss": 5.5299,
|
2704 |
+
"step": 385
|
2705 |
+
},
|
2706 |
+
{
|
2707 |
+
"epoch": 0.09,
|
2708 |
+
"grad_norm": 3.743314132309298,
|
2709 |
+
"learning_rate": 2.736973680761702e-06,
|
2710 |
+
"loss": 5.6108,
|
2711 |
+
"step": 386
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"epoch": 0.09,
|
2715 |
+
"grad_norm": 3.020284676653917,
|
2716 |
+
"learning_rate": 2.692601569943407e-06,
|
2717 |
+
"loss": 5.5949,
|
2718 |
+
"step": 387
|
2719 |
+
},
|
2720 |
+
{
|
2721 |
+
"epoch": 0.09,
|
2722 |
+
"grad_norm": 2.8688896218347466,
|
2723 |
+
"learning_rate": 2.648536062927999e-06,
|
2724 |
+
"loss": 5.6542,
|
2725 |
+
"step": 388
|
2726 |
+
},
|
2727 |
+
{
|
2728 |
+
"epoch": 0.09,
|
2729 |
+
"grad_norm": 2.8774214420614292,
|
2730 |
+
"learning_rate": 2.604779008615895e-06,
|
2731 |
+
"loss": 5.6006,
|
2732 |
+
"step": 389
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 0.09,
|
2736 |
+
"grad_norm": 2.5974922903934443,
|
2737 |
+
"learning_rate": 2.5613322429654573e-06,
|
2738 |
+
"loss": 5.4603,
|
2739 |
+
"step": 390
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 0.09,
|
2743 |
+
"grad_norm": 3.1182016556730034,
|
2744 |
+
"learning_rate": 2.5181975889159615e-06,
|
2745 |
+
"loss": 5.4617,
|
2746 |
+
"step": 391
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"epoch": 0.09,
|
2750 |
+
"grad_norm": 3.02296875164515,
|
2751 |
+
"learning_rate": 2.475376856311097e-06,
|
2752 |
+
"loss": 5.5758,
|
2753 |
+
"step": 392
|
2754 |
+
},
|
2755 |
+
{
|
2756 |
+
"epoch": 0.09,
|
2757 |
+
"grad_norm": 3.1443470043442066,
|
2758 |
+
"learning_rate": 2.432871841823047e-06,
|
2759 |
+
"loss": 5.4938,
|
2760 |
+
"step": 393
|
2761 |
+
},
|
2762 |
+
{
|
2763 |
+
"epoch": 0.09,
|
2764 |
+
"grad_norm": 5.21437085093465,
|
2765 |
+
"learning_rate": 2.390684328877089e-06,
|
2766 |
+
"loss": 5.543,
|
2767 |
+
"step": 394
|
2768 |
+
},
|
2769 |
+
{
|
2770 |
+
"epoch": 0.09,
|
2771 |
+
"grad_norm": 3.0664362463556603,
|
2772 |
+
"learning_rate": 2.3488160875767717e-06,
|
2773 |
+
"loss": 5.6436,
|
2774 |
+
"step": 395
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 0.09,
|
2778 |
+
"grad_norm": 2.793841886787081,
|
2779 |
+
"learning_rate": 2.307268874629649e-06,
|
2780 |
+
"loss": 5.3901,
|
2781 |
+
"step": 396
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 0.09,
|
2785 |
+
"grad_norm": 2.6568460536060137,
|
2786 |
+
"learning_rate": 2.266044433273562e-06,
|
2787 |
+
"loss": 5.5585,
|
2788 |
+
"step": 397
|
2789 |
+
},
|
2790 |
+
{
|
2791 |
+
"epoch": 0.09,
|
2792 |
+
"grad_norm": 3.3923148492013504,
|
2793 |
+
"learning_rate": 2.2251444932035094e-06,
|
2794 |
+
"loss": 5.3515,
|
2795 |
+
"step": 398
|
2796 |
+
},
|
2797 |
+
{
|
2798 |
+
"epoch": 0.09,
|
2799 |
+
"grad_norm": 4.187296832849823,
|
2800 |
+
"learning_rate": 2.184570770499056e-06,
|
2801 |
+
"loss": 5.4722,
|
2802 |
+
"step": 399
|
2803 |
+
},
|
2804 |
+
{
|
2805 |
+
"epoch": 0.09,
|
2806 |
+
"grad_norm": 2.8884881509409555,
|
2807 |
+
"learning_rate": 2.1443249675523536e-06,
|
2808 |
+
"loss": 5.537,
|
2809 |
+
"step": 400
|
2810 |
+
},
|
2811 |
+
{
|
2812 |
+
"epoch": 0.09,
|
2813 |
+
"grad_norm": 3.051680492849398,
|
2814 |
+
"learning_rate": 2.1044087729966856e-06,
|
2815 |
+
"loss": 5.4369,
|
2816 |
+
"step": 401
|
2817 |
+
},
|
2818 |
+
{
|
2819 |
+
"epoch": 0.09,
|
2820 |
+
"grad_norm": 2.8280027110122608,
|
2821 |
+
"learning_rate": 2.064823861635633e-06,
|
2822 |
+
"loss": 5.5705,
|
2823 |
+
"step": 402
|
2824 |
+
},
|
2825 |
+
{
|
2826 |
+
"epoch": 0.09,
|
2827 |
+
"grad_norm": 3.4037253520135216,
|
2828 |
+
"learning_rate": 2.025571894372794e-06,
|
2829 |
+
"loss": 5.5584,
|
2830 |
+
"step": 403
|
2831 |
+
},
|
2832 |
+
{
|
2833 |
+
"epoch": 0.09,
|
2834 |
+
"grad_norm": 4.319540102434969,
|
2835 |
+
"learning_rate": 1.9866545181421016e-06,
|
2836 |
+
"loss": 5.4076,
|
2837 |
+
"step": 404
|
2838 |
+
},
|
2839 |
+
{
|
2840 |
+
"epoch": 0.09,
|
2841 |
+
"grad_norm": 2.808044157619595,
|
2842 |
+
"learning_rate": 1.9480733658387175e-06,
|
2843 |
+
"loss": 5.4129,
|
2844 |
+
"step": 405
|
2845 |
+
},
|
2846 |
+
{
|
2847 |
+
"epoch": 0.09,
|
2848 |
+
"grad_norm": 2.7351469976881306,
|
2849 |
+
"learning_rate": 1.9098300562505266e-06,
|
2850 |
+
"loss": 5.6271,
|
2851 |
+
"step": 406
|
2852 |
+
},
|
2853 |
+
{
|
2854 |
+
"epoch": 0.09,
|
2855 |
+
"grad_norm": 2.7165917157682737,
|
2856 |
+
"learning_rate": 1.8719261939902023e-06,
|
2857 |
+
"loss": 5.4525,
|
2858 |
+
"step": 407
|
2859 |
+
},
|
2860 |
+
{
|
2861 |
+
"epoch": 0.09,
|
2862 |
+
"grad_norm": 3.040380201846354,
|
2863 |
+
"learning_rate": 1.8343633694278895e-06,
|
2864 |
+
"loss": 5.5268,
|
2865 |
+
"step": 408
|
2866 |
+
},
|
2867 |
+
{
|
2868 |
+
"epoch": 0.09,
|
2869 |
+
"grad_norm": 2.8167171485840035,
|
2870 |
+
"learning_rate": 1.7971431586244814e-06,
|
2871 |
+
"loss": 5.4247,
|
2872 |
+
"step": 409
|
2873 |
+
},
|
2874 |
+
{
|
2875 |
+
"epoch": 0.09,
|
2876 |
+
"grad_norm": 2.8317598164442632,
|
2877 |
+
"learning_rate": 1.7602671232654755e-06,
|
2878 |
+
"loss": 5.4478,
|
2879 |
+
"step": 410
|
2880 |
+
},
|
2881 |
+
{
|
2882 |
+
"epoch": 0.09,
|
2883 |
+
"grad_norm": 2.8994461696949276,
|
2884 |
+
"learning_rate": 1.723736810595461e-06,
|
2885 |
+
"loss": 5.6048,
|
2886 |
+
"step": 411
|
2887 |
+
},
|
2888 |
+
{
|
2889 |
+
"epoch": 0.09,
|
2890 |
+
"grad_norm": 2.848027250263409,
|
2891 |
+
"learning_rate": 1.687553753353195e-06,
|
2892 |
+
"loss": 5.6236,
|
2893 |
+
"step": 412
|
2894 |
+
},
|
2895 |
+
{
|
2896 |
+
"epoch": 0.09,
|
2897 |
+
"grad_norm": 2.7979223820102126,
|
2898 |
+
"learning_rate": 1.6517194697072903e-06,
|
2899 |
+
"loss": 5.5997,
|
2900 |
+
"step": 413
|
2901 |
+
},
|
2902 |
+
{
|
2903 |
+
"epoch": 0.09,
|
2904 |
+
"grad_norm": 4.406985290020591,
|
2905 |
+
"learning_rate": 1.6162354631925203e-06,
|
2906 |
+
"loss": 5.6047,
|
2907 |
+
"step": 414
|
2908 |
+
},
|
2909 |
+
{
|
2910 |
+
"epoch": 0.1,
|
2911 |
+
"grad_norm": 3.2716585943989362,
|
2912 |
+
"learning_rate": 1.5811032226467304e-06,
|
2913 |
+
"loss": 5.5763,
|
2914 |
+
"step": 415
|
2915 |
+
},
|
2916 |
+
{
|
2917 |
+
"epoch": 0.1,
|
2918 |
+
"grad_norm": 3.2119530719491967,
|
2919 |
+
"learning_rate": 1.5463242221483742e-06,
|
2920 |
+
"loss": 5.5576,
|
2921 |
+
"step": 416
|
2922 |
+
},
|
2923 |
+
{
|
2924 |
+
"epoch": 0.1,
|
2925 |
+
"grad_norm": 2.7525960595562,
|
2926 |
+
"learning_rate": 1.511899920954656e-06,
|
2927 |
+
"loss": 5.6124,
|
2928 |
+
"step": 417
|
2929 |
+
},
|
2930 |
+
{
|
2931 |
+
"epoch": 0.1,
|
2932 |
+
"grad_norm": 2.575626661151134,
|
2933 |
+
"learning_rate": 1.4778317634403082e-06,
|
2934 |
+
"loss": 5.5585,
|
2935 |
+
"step": 418
|
2936 |
+
},
|
2937 |
+
{
|
2938 |
+
"epoch": 0.1,
|
2939 |
+
"grad_norm": 3.109772746844713,
|
2940 |
+
"learning_rate": 1.4441211790369892e-06,
|
2941 |
+
"loss": 5.6023,
|
2942 |
+
"step": 419
|
2943 |
+
},
|
2944 |
+
{
|
2945 |
+
"epoch": 0.1,
|
2946 |
+
"grad_norm": 3.48770216871105,
|
2947 |
+
"learning_rate": 1.4107695821733026e-06,
|
2948 |
+
"loss": 5.6905,
|
2949 |
+
"step": 420
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"epoch": 0.1,
|
2953 |
+
"grad_norm": 2.776399817120803,
|
2954 |
+
"learning_rate": 1.3777783722154603e-06,
|
2955 |
+
"loss": 5.5346,
|
2956 |
+
"step": 421
|
2957 |
+
},
|
2958 |
+
{
|
2959 |
+
"epoch": 0.1,
|
2960 |
+
"grad_norm": 2.689995264190314,
|
2961 |
+
"learning_rate": 1.3451489334085555e-06,
|
2962 |
+
"loss": 5.776,
|
2963 |
+
"step": 422
|
2964 |
+
},
|
2965 |
+
{
|
2966 |
+
"epoch": 0.1,
|
2967 |
+
"grad_norm": 2.9589020357519855,
|
2968 |
+
"learning_rate": 1.3128826348184886e-06,
|
2969 |
+
"loss": 5.5889,
|
2970 |
+
"step": 423
|
2971 |
+
},
|
2972 |
+
{
|
2973 |
+
"epoch": 0.1,
|
2974 |
+
"grad_norm": 3.926701278155943,
|
2975 |
+
"learning_rate": 1.2809808302745298e-06,
|
2976 |
+
"loss": 5.4377,
|
2977 |
+
"step": 424
|
2978 |
+
},
|
2979 |
+
{
|
2980 |
+
"epoch": 0.1,
|
2981 |
+
"grad_norm": 8.614907788515115,
|
2982 |
+
"learning_rate": 1.249444858312502e-06,
|
2983 |
+
"loss": 5.3811,
|
2984 |
+
"step": 425
|
2985 |
+
},
|
2986 |
+
{
|
2987 |
+
"epoch": 0.1,
|
2988 |
+
"grad_norm": 2.844919169807355,
|
2989 |
+
"learning_rate": 1.218276042118629e-06,
|
2990 |
+
"loss": 5.3662,
|
2991 |
+
"step": 426
|
2992 |
+
},
|
2993 |
+
{
|
2994 |
+
"epoch": 0.1,
|
2995 |
+
"grad_norm": 3.200788157807446,
|
2996 |
+
"learning_rate": 1.1874756894740137e-06,
|
2997 |
+
"loss": 5.5491,
|
2998 |
+
"step": 427
|
2999 |
+
},
|
3000 |
+
{
|
3001 |
+
"epoch": 0.1,
|
3002 |
+
"grad_norm": 2.8493126527965655,
|
3003 |
+
"learning_rate": 1.1570450926997657e-06,
|
3004 |
+
"loss": 5.6191,
|
3005 |
+
"step": 428
|
3006 |
+
},
|
3007 |
+
{
|
3008 |
+
"epoch": 0.1,
|
3009 |
+
"grad_norm": 5.199235991842511,
|
3010 |
+
"learning_rate": 1.1269855286027798e-06,
|
3011 |
+
"loss": 5.6003,
|
3012 |
+
"step": 429
|
3013 |
+
},
|
3014 |
+
{
|
3015 |
+
"epoch": 0.1,
|
3016 |
+
"grad_norm": 2.577166179252903,
|
3017 |
+
"learning_rate": 1.0972982584221592e-06,
|
3018 |
+
"loss": 5.5332,
|
3019 |
+
"step": 430
|
3020 |
+
},
|
3021 |
+
{
|
3022 |
+
"epoch": 0.1,
|
3023 |
+
"grad_norm": 2.5080571141871837,
|
3024 |
+
"learning_rate": 1.067984527776309e-06,
|
3025 |
+
"loss": 5.5226,
|
3026 |
+
"step": 431
|
3027 |
+
},
|
3028 |
+
{
|
3029 |
+
"epoch": 0.1,
|
3030 |
+
"grad_norm": 2.9156280169840563,
|
3031 |
+
"learning_rate": 1.0390455666106547e-06,
|
3032 |
+
"loss": 5.4879,
|
3033 |
+
"step": 432
|
3034 |
+
},
|
3035 |
+
{
|
3036 |
+
"epoch": 0.1,
|
3037 |
+
"grad_norm": 3.3439938592575094,
|
3038 |
+
"learning_rate": 1.010482589146048e-06,
|
3039 |
+
"loss": 5.5742,
|
3040 |
+
"step": 433
|
3041 |
+
},
|
3042 |
+
{
|
3043 |
+
"epoch": 0.1,
|
3044 |
+
"grad_norm": 2.70223178081651,
|
3045 |
+
"learning_rate": 9.822967938278172e-07,
|
3046 |
+
"loss": 5.53,
|
3047 |
+
"step": 434
|
3048 |
+
},
|
3049 |
+
{
|
3050 |
+
"epoch": 0.1,
|
3051 |
+
"grad_norm": 2.910070747579829,
|
3052 |
+
"learning_rate": 9.544893632754816e-07,
|
3053 |
+
"loss": 5.5037,
|
3054 |
+
"step": 435
|
3055 |
+
},
|
3056 |
+
{
|
3057 |
+
"epoch": 0.1,
|
3058 |
+
"grad_norm": 2.859773242243526,
|
3059 |
+
"learning_rate": 9.270614642331377e-07,
|
3060 |
+
"loss": 5.5309,
|
3061 |
+
"step": 436
|
3062 |
+
},
|
3063 |
+
{
|
3064 |
+
"epoch": 0.1,
|
3065 |
+
"grad_norm": 2.990603251521546,
|
3066 |
+
"learning_rate": 9.000142475204965e-07,
|
3067 |
+
"loss": 5.4596,
|
3068 |
+
"step": 437
|
3069 |
+
},
|
3070 |
+
{
|
3071 |
+
"epoch": 0.1,
|
3072 |
+
"grad_norm": 11.13467016828935,
|
3073 |
+
"learning_rate": 8.733488479845997e-07,
|
3074 |
+
"loss": 5.4875,
|
3075 |
+
"step": 438
|
3076 |
+
},
|
3077 |
+
{
|
3078 |
+
"epoch": 0.1,
|
3079 |
+
"grad_norm": 3.499523656417884,
|
3080 |
+
"learning_rate": 8.470663844522053e-07,
|
3081 |
+
"loss": 5.5061,
|
3082 |
+
"step": 439
|
3083 |
+
},
|
3084 |
+
{
|
3085 |
+
"epoch": 0.1,
|
3086 |
+
"grad_norm": 3.2234243851466418,
|
3087 |
+
"learning_rate": 8.211679596828481e-07,
|
3088 |
+
"loss": 5.5508,
|
3089 |
+
"step": 440
|
3090 |
+
},
|
3091 |
+
{
|
3092 |
+
"epoch": 0.1,
|
3093 |
+
"grad_norm": 3.689783836568065,
|
3094 |
+
"learning_rate": 7.956546603225601e-07,
|
3095 |
+
"loss": 5.4979,
|
3096 |
+
"step": 441
|
3097 |
+
},
|
3098 |
+
{
|
3099 |
+
"epoch": 0.1,
|
3100 |
+
"grad_norm": 3.550751273965273,
|
3101 |
+
"learning_rate": 7.705275568582848e-07,
|
3102 |
+
"loss": 5.6264,
|
3103 |
+
"step": 442
|
3104 |
+
},
|
3105 |
+
{
|
3106 |
+
"epoch": 0.1,
|
3107 |
+
"grad_norm": 2.721521824889205,
|
3108 |
+
"learning_rate": 7.457877035729588e-07,
|
3109 |
+
"loss": 5.5113,
|
3110 |
+
"step": 443
|
3111 |
+
},
|
3112 |
+
{
|
3113 |
+
"epoch": 0.1,
|
3114 |
+
"grad_norm": 2.768024715912084,
|
3115 |
+
"learning_rate": 7.21436138501278e-07,
|
3116 |
+
"loss": 5.5389,
|
3117 |
+
"step": 444
|
3118 |
+
},
|
3119 |
+
{
|
3120 |
+
"epoch": 0.1,
|
3121 |
+
"grad_norm": 2.6088969137232456,
|
3122 |
+
"learning_rate": 6.974738833861383e-07,
|
3123 |
+
"loss": 5.4611,
|
3124 |
+
"step": 445
|
3125 |
+
},
|
3126 |
+
{
|
3127 |
+
"epoch": 0.1,
|
3128 |
+
"grad_norm": 2.693525018419924,
|
3129 |
+
"learning_rate": 6.739019436357774e-07,
|
3130 |
+
"loss": 5.5317,
|
3131 |
+
"step": 446
|
3132 |
+
},
|
3133 |
+
{
|
3134 |
+
"epoch": 0.1,
|
3135 |
+
"grad_norm": 2.5671066935530367,
|
3136 |
+
"learning_rate": 6.507213082815745e-07,
|
3137 |
+
"loss": 5.5331,
|
3138 |
+
"step": 447
|
3139 |
+
},
|
3140 |
+
{
|
3141 |
+
"epoch": 0.1,
|
3142 |
+
"grad_norm": 3.4210107522987996,
|
3143 |
+
"learning_rate": 6.279329499365649e-07,
|
3144 |
+
"loss": 5.6906,
|
3145 |
+
"step": 448
|
3146 |
+
},
|
3147 |
+
{
|
3148 |
+
"epoch": 0.1,
|
3149 |
+
"grad_norm": 2.772985182537546,
|
3150 |
+
"learning_rate": 6.055378247546217e-07,
|
3151 |
+
"loss": 5.6865,
|
3152 |
+
"step": 449
|
3153 |
+
},
|
3154 |
+
{
|
3155 |
+
"epoch": 0.1,
|
3156 |
+
"grad_norm": 3.298986027174084,
|
3157 |
+
"learning_rate": 5.835368723903456e-07,
|
3158 |
+
"loss": 5.5719,
|
3159 |
+
"step": 450
|
3160 |
+
},
|
3161 |
+
{
|
3162 |
+
"epoch": 0.1,
|
3163 |
+
"grad_norm": 2.715794146885051,
|
3164 |
+
"learning_rate": 5.619310159596358e-07,
|
3165 |
+
"loss": 5.6766,
|
3166 |
+
"step": 451
|
3167 |
+
},
|
3168 |
+
{
|
3169 |
+
"epoch": 0.1,
|
3170 |
+
"grad_norm": 3.0933470216619243,
|
3171 |
+
"learning_rate": 5.407211620009545e-07,
|
3172 |
+
"loss": 5.5423,
|
3173 |
+
"step": 452
|
3174 |
+
},
|
3175 |
+
{
|
3176 |
+
"epoch": 0.1,
|
3177 |
+
"grad_norm": 4.143643936396307,
|
3178 |
+
"learning_rate": 5.199082004372958e-07,
|
3179 |
+
"loss": 5.3755,
|
3180 |
+
"step": 453
|
3181 |
+
},
|
3182 |
+
{
|
3183 |
+
"epoch": 0.1,
|
3184 |
+
"grad_norm": 2.868440457281347,
|
3185 |
+
"learning_rate": 4.994930045388414e-07,
|
3186 |
+
"loss": 5.5415,
|
3187 |
+
"step": 454
|
3188 |
+
},
|
3189 |
+
{
|
3190 |
+
"epoch": 0.1,
|
3191 |
+
"grad_norm": 2.9560966126847372,
|
3192 |
+
"learning_rate": 4.794764308863242e-07,
|
3193 |
+
"loss": 5.636,
|
3194 |
+
"step": 455
|
3195 |
+
},
|
3196 |
+
{
|
3197 |
+
"epoch": 0.1,
|
3198 |
+
"grad_norm": 3.658181273470064,
|
3199 |
+
"learning_rate": 4.5985931933508757e-07,
|
3200 |
+
"loss": 5.6803,
|
3201 |
+
"step": 456
|
3202 |
+
},
|
3203 |
+
{
|
3204 |
+
"epoch": 0.1,
|
3205 |
+
"grad_norm": 3.423368722688064,
|
3206 |
+
"learning_rate": 4.406424929798403e-07,
|
3207 |
+
"loss": 5.4089,
|
3208 |
+
"step": 457
|
3209 |
+
},
|
3210 |
+
{
|
3211 |
+
"epoch": 0.11,
|
3212 |
+
"grad_norm": 3.0534636300165188,
|
3213 |
+
"learning_rate": 4.218267581201296e-07,
|
3214 |
+
"loss": 5.5947,
|
3215 |
+
"step": 458
|
3216 |
+
},
|
3217 |
+
{
|
3218 |
+
"epoch": 0.11,
|
3219 |
+
"grad_norm": 4.345779139508837,
|
3220 |
+
"learning_rate": 4.034129042265067e-07,
|
3221 |
+
"loss": 5.5494,
|
3222 |
+
"step": 459
|
3223 |
+
},
|
3224 |
+
{
|
3225 |
+
"epoch": 0.11,
|
3226 |
+
"grad_norm": 2.733287289238342,
|
3227 |
+
"learning_rate": 3.8540170390740097e-07,
|
3228 |
+
"loss": 5.3952,
|
3229 |
+
"step": 460
|
3230 |
+
},
|
3231 |
+
{
|
3232 |
+
"epoch": 0.11,
|
3233 |
+
"grad_norm": 2.578794557649385,
|
3234 |
+
"learning_rate": 3.67793912876705e-07,
|
3235 |
+
"loss": 5.4544,
|
3236 |
+
"step": 461
|
3237 |
+
},
|
3238 |
+
{
|
3239 |
+
"epoch": 0.11,
|
3240 |
+
"grad_norm": 6.462067447086064,
|
3241 |
+
"learning_rate": 3.5059026992206645e-07,
|
3242 |
+
"loss": 5.4354,
|
3243 |
+
"step": 462
|
3244 |
+
},
|
3245 |
+
{
|
3246 |
+
"epoch": 0.11,
|
3247 |
+
"grad_norm": 2.6125800075217755,
|
3248 |
+
"learning_rate": 3.3379149687388866e-07,
|
3249 |
+
"loss": 5.3488,
|
3250 |
+
"step": 463
|
3251 |
+
},
|
3252 |
+
{
|
3253 |
+
"epoch": 0.11,
|
3254 |
+
"grad_norm": 2.7049049281222506,
|
3255 |
+
"learning_rate": 3.1739829857504235e-07,
|
3256 |
+
"loss": 5.5727,
|
3257 |
+
"step": 464
|
3258 |
+
},
|
3259 |
+
{
|
3260 |
+
"epoch": 0.11,
|
3261 |
+
"grad_norm": 3.620043130272865,
|
3262 |
+
"learning_rate": 3.0141136285129825e-07,
|
3263 |
+
"loss": 5.6706,
|
3264 |
+
"step": 465
|
3265 |
+
},
|
3266 |
+
{
|
3267 |
+
"epoch": 0.11,
|
3268 |
+
"grad_norm": 3.0809997678670187,
|
3269 |
+
"learning_rate": 2.8583136048245697e-07,
|
3270 |
+
"loss": 5.7061,
|
3271 |
+
"step": 466
|
3272 |
+
},
|
3273 |
+
{
|
3274 |
+
"epoch": 0.11,
|
3275 |
+
"grad_norm": 3.1616078894179482,
|
3276 |
+
"learning_rate": 2.706589451742181e-07,
|
3277 |
+
"loss": 5.6098,
|
3278 |
+
"step": 467
|
3279 |
+
},
|
3280 |
+
{
|
3281 |
+
"epoch": 0.11,
|
3282 |
+
"grad_norm": 2.6779003366529275,
|
3283 |
+
"learning_rate": 2.5589475353073987e-07,
|
3284 |
+
"loss": 5.4707,
|
3285 |
+
"step": 468
|
3286 |
+
},
|
3287 |
+
{
|
3288 |
+
"epoch": 0.11,
|
3289 |
+
"grad_norm": 6.707485770015231,
|
3290 |
+
"learning_rate": 2.4153940502793185e-07,
|
3291 |
+
"loss": 5.4335,
|
3292 |
+
"step": 469
|
3293 |
+
},
|
3294 |
+
{
|
3295 |
+
"epoch": 0.11,
|
3296 |
+
"grad_norm": 3.1605981177662383,
|
3297 |
+
"learning_rate": 2.2759350198746978e-07,
|
3298 |
+
"loss": 5.5259,
|
3299 |
+
"step": 470
|
3300 |
+
},
|
3301 |
+
{
|
3302 |
+
"epoch": 0.11,
|
3303 |
+
"grad_norm": 3.014186395148381,
|
3304 |
+
"learning_rate": 2.1405762955151178e-07,
|
3305 |
+
"loss": 5.6467,
|
3306 |
+
"step": 471
|
3307 |
+
},
|
3308 |
+
{
|
3309 |
+
"epoch": 0.11,
|
3310 |
+
"grad_norm": 2.889242425776768,
|
3311 |
+
"learning_rate": 2.009323556581566e-07,
|
3312 |
+
"loss": 5.4662,
|
3313 |
+
"step": 472
|
3314 |
+
},
|
3315 |
+
{
|
3316 |
+
"epoch": 0.11,
|
3317 |
+
"grad_norm": 3.095182172474526,
|
3318 |
+
"learning_rate": 1.8821823101760949e-07,
|
3319 |
+
"loss": 5.5991,
|
3320 |
+
"step": 473
|
3321 |
+
},
|
3322 |
+
{
|
3323 |
+
"epoch": 0.11,
|
3324 |
+
"grad_norm": 2.8025822861133,
|
3325 |
+
"learning_rate": 1.7591578908907724e-07,
|
3326 |
+
"loss": 5.6508,
|
3327 |
+
"step": 474
|
3328 |
+
},
|
3329 |
+
{
|
3330 |
+
"epoch": 0.11,
|
3331 |
+
"grad_norm": 3.052158040260495,
|
3332 |
+
"learning_rate": 1.6402554605838173e-07,
|
3333 |
+
"loss": 5.6078,
|
3334 |
+
"step": 475
|
3335 |
+
},
|
3336 |
+
{
|
3337 |
+
"epoch": 0.11,
|
3338 |
+
"grad_norm": 3.0334351565612603,
|
3339 |
+
"learning_rate": 1.5254800081630828e-07,
|
3340 |
+
"loss": 5.6521,
|
3341 |
+
"step": 476
|
3342 |
+
},
|
3343 |
+
{
|
3344 |
+
"epoch": 0.11,
|
3345 |
+
"grad_norm": 3.2390067488864203,
|
3346 |
+
"learning_rate": 1.4148363493766803e-07,
|
3347 |
+
"loss": 5.5932,
|
3348 |
+
"step": 477
|
3349 |
+
},
|
3350 |
+
{
|
3351 |
+
"epoch": 0.11,
|
3352 |
+
"grad_norm": 2.6513576443759246,
|
3353 |
+
"learning_rate": 1.30832912661093e-07,
|
3354 |
+
"loss": 5.4863,
|
3355 |
+
"step": 478
|
3356 |
+
},
|
3357 |
+
{
|
3358 |
+
"epoch": 0.11,
|
3359 |
+
"grad_norm": 2.8858856433117337,
|
3360 |
+
"learning_rate": 1.2059628086956044e-07,
|
3361 |
+
"loss": 5.6502,
|
3362 |
+
"step": 479
|
3363 |
+
},
|
3364 |
+
{
|
3365 |
+
"epoch": 0.11,
|
3366 |
+
"grad_norm": 6.026494893009913,
|
3367 |
+
"learning_rate": 1.1077416907163573e-07,
|
3368 |
+
"loss": 5.6161,
|
3369 |
+
"step": 480
|
3370 |
+
},
|
3371 |
+
{
|
3372 |
+
"epoch": 0.11,
|
3373 |
+
"grad_norm": 3.269750470433105,
|
3374 |
+
"learning_rate": 1.0136698938346012e-07,
|
3375 |
+
"loss": 5.6146,
|
3376 |
+
"step": 481
|
3377 |
+
},
|
3378 |
+
{
|
3379 |
+
"epoch": 0.11,
|
3380 |
+
"grad_norm": 2.915176554260305,
|
3381 |
+
"learning_rate": 9.237513651145224e-08,
|
3382 |
+
"loss": 5.4934,
|
3383 |
+
"step": 482
|
3384 |
+
},
|
3385 |
+
{
|
3386 |
+
"epoch": 0.11,
|
3387 |
+
"grad_norm": 2.703171232414342,
|
3388 |
+
"learning_rate": 8.379898773574924e-08,
|
3389 |
+
"loss": 5.4725,
|
3390 |
+
"step": 483
|
3391 |
+
},
|
3392 |
+
{
|
3393 |
+
"epoch": 0.11,
|
3394 |
+
"grad_norm": 2.955963983229779,
|
3395 |
+
"learning_rate": 7.563890289437825e-08,
|
3396 |
+
"loss": 5.7339,
|
3397 |
+
"step": 484
|
3398 |
+
},
|
3399 |
+
{
|
3400 |
+
"epoch": 0.11,
|
3401 |
+
"grad_norm": 3.089224348103812,
|
3402 |
+
"learning_rate": 6.78952243681541e-08,
|
3403 |
+
"loss": 5.5206,
|
3404 |
+
"step": 485
|
3405 |
+
},
|
3406 |
+
{
|
3407 |
+
"epoch": 0.11,
|
3408 |
+
"grad_norm": 3.1319980991851524,
|
3409 |
+
"learning_rate": 6.056827706632185e-08,
|
3410 |
+
"loss": 5.3931,
|
3411 |
+
"step": 486
|
3412 |
+
},
|
3413 |
+
{
|
3414 |
+
"epoch": 0.11,
|
3415 |
+
"grad_norm": 3.2761777556196376,
|
3416 |
+
"learning_rate": 5.365836841291439e-08,
|
3417 |
+
"loss": 5.4341,
|
3418 |
+
"step": 487
|
3419 |
+
},
|
3420 |
+
{
|
3421 |
+
"epoch": 0.11,
|
3422 |
+
"grad_norm": 2.8804231914855665,
|
3423 |
+
"learning_rate": 4.716578833386054e-08,
|
3424 |
+
"loss": 5.3863,
|
3425 |
+
"step": 488
|
3426 |
+
},
|
3427 |
+
{
|
3428 |
+
"epoch": 0.11,
|
3429 |
+
"grad_norm": 2.2873446601496052,
|
3430 |
+
"learning_rate": 4.109080924481479e-08,
|
3431 |
+
"loss": 5.4484,
|
3432 |
+
"step": 489
|
3433 |
+
},
|
3434 |
+
{
|
3435 |
+
"epoch": 0.11,
|
3436 |
+
"grad_norm": 3.110318580535298,
|
3437 |
+
"learning_rate": 3.543368603973529e-08,
|
3438 |
+
"loss": 5.5471,
|
3439 |
+
"step": 490
|
3440 |
+
},
|
3441 |
+
{
|
3442 |
+
"epoch": 0.11,
|
3443 |
+
"grad_norm": 3.791270347470137,
|
3444 |
+
"learning_rate": 3.019465608018024e-08,
|
3445 |
+
"loss": 5.5891,
|
3446 |
+
"step": 491
|
3447 |
+
},
|
3448 |
+
{
|
3449 |
+
"epoch": 0.11,
|
3450 |
+
"grad_norm": 2.6716828750765056,
|
3451 |
+
"learning_rate": 2.537393918535358e-08,
|
3452 |
+
"loss": 5.5102,
|
3453 |
+
"step": 492
|
3454 |
+
},
|
3455 |
+
{
|
3456 |
+
"epoch": 0.11,
|
3457 |
+
"grad_norm": 4.590128972359705,
|
3458 |
+
"learning_rate": 2.0971737622883515e-08,
|
3459 |
+
"loss": 5.6497,
|
3460 |
+
"step": 493
|
3461 |
+
},
|
3462 |
+
{
|
3463 |
+
"epoch": 0.11,
|
3464 |
+
"grad_norm": 2.491730237188739,
|
3465 |
+
"learning_rate": 1.698823610032929e-08,
|
3466 |
+
"loss": 5.5464,
|
3467 |
+
"step": 494
|
3468 |
+
},
|
3469 |
+
{
|
3470 |
+
"epoch": 0.11,
|
3471 |
+
"grad_norm": 2.541793206348526,
|
3472 |
+
"learning_rate": 1.3423601757436289e-08,
|
3473 |
+
"loss": 5.5446,
|
3474 |
+
"step": 495
|
3475 |
+
},
|
3476 |
+
{
|
3477 |
+
"epoch": 0.11,
|
3478 |
+
"grad_norm": 4.43180997277326,
|
3479 |
+
"learning_rate": 1.0277984159122734e-08,
|
3480 |
+
"loss": 5.5588,
|
3481 |
+
"step": 496
|
3482 |
+
},
|
3483 |
+
{
|
3484 |
+
"epoch": 0.11,
|
3485 |
+
"grad_norm": 2.7657573951340706,
|
3486 |
+
"learning_rate": 7.551515289203615e-09,
|
3487 |
+
"loss": 5.6594,
|
3488 |
+
"step": 497
|
3489 |
+
},
|
3490 |
+
{
|
3491 |
+
"epoch": 0.11,
|
3492 |
+
"grad_norm": 2.8695545506323783,
|
3493 |
+
"learning_rate": 5.2443095448506674e-09,
|
3494 |
+
"loss": 5.625,
|
3495 |
+
"step": 498
|
3496 |
+
},
|
3497 |
+
{
|
3498 |
+
"epoch": 0.11,
|
3499 |
+
"grad_norm": 3.165811767433061,
|
3500 |
+
"learning_rate": 3.3564637317984318e-09,
|
3501 |
+
"loss": 5.4195,
|
3502 |
+
"step": 499
|
3503 |
+
},
|
3504 |
+
{
|
3505 |
+
"epoch": 0.11,
|
3506 |
+
"grad_norm": 2.9299117263430903,
|
3507 |
+
"learning_rate": 1.888057060274173e-09,
|
3508 |
+
"loss": 5.6383,
|
3509 |
+
"step": 500
|
3510 |
+
}
|
3511 |
+
],
|
3512 |
+
"logging_steps": 1.0,
|
3513 |
+
"max_steps": 500,
|
3514 |
+
"num_input_tokens_seen": 0,
|
3515 |
+
"num_train_epochs": 1,
|
3516 |
+
"save_steps": 25,
|
3517 |
+
"total_flos": 2968550903808.0,
|
3518 |
+
"train_batch_size": 32,
|
3519 |
+
"trial_name": null,
|
3520 |
+
"trial_params": null
|
3521 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|