scasutt commited on
Commit
c016138
·
1 Parent(s): 7275097

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: wav2vec2-base_toy_train_data_random_noise
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # wav2vec2-base_toy_train_data_random_noise
14
+
15
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 1.0909
18
+ - Wer: 0.7351
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0001
38
+ - train_batch_size: 16
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - gradient_accumulation_steps: 2
42
+ - total_train_batch_size: 32
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 1000
46
+ - num_epochs: 20
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
51
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
52
+ | 3.128 | 2.1 | 250 | 3.5052 | 1.0 |
53
+ | 3.0423 | 4.2 | 500 | 2.9312 | 1.0 |
54
+ | 1.4109 | 6.3 | 750 | 1.2618 | 0.8915 |
55
+ | 0.9132 | 8.4 | 1000 | 1.1074 | 0.8436 |
56
+ | 0.7146 | 10.5 | 1250 | 1.0397 | 0.7876 |
57
+ | 0.5418 | 12.6 | 1500 | 1.0359 | 0.7662 |
58
+ | 0.4649 | 14.7 | 1750 | 1.0469 | 0.7467 |
59
+ | 0.4127 | 16.8 | 2000 | 1.0655 | 0.7404 |
60
+ | 0.3881 | 18.9 | 2250 | 1.0909 | 0.7351 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.17.0
66
+ - Pytorch 1.11.0+cu102
67
+ - Datasets 2.0.0
68
+ - Tokenizers 0.11.6