File size: 1,938 Bytes
a2ce32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base_toy_train_data_random_noise_0.1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base_toy_train_data_random_noise_0.1

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9263
- Wer: 0.7213

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.1296        | 2.1   | 250  | 3.5088          | 1.0    |
| 3.0728        | 4.2   | 500  | 3.1694          | 1.0    |
| 1.8686        | 6.3   | 750  | 1.3414          | 0.9321 |
| 1.1241        | 8.4   | 1000 | 1.0196          | 0.8321 |
| 0.8704        | 10.5  | 1250 | 0.9387          | 0.7962 |
| 0.6734        | 12.6  | 1500 | 0.9309          | 0.7640 |
| 0.5832        | 14.7  | 1750 | 0.9329          | 0.7346 |
| 0.5207        | 16.8  | 2000 | 0.9060          | 0.7247 |
| 0.4857        | 18.9  | 2250 | 0.9263          | 0.7213 |


### Framework versions

- Transformers 4.17.0
- Pytorch 1.11.0+cu102
- Datasets 2.0.0
- Tokenizers 0.11.6