File size: 6,132 Bytes
d7251f6 fad9426 d7251f6 fad9426 d7251f6 96115cb d7251f6 fad9426 423eeb1 fad9426 d0f56a6 fad9426 d0f56a6 d7251f6 96115cb f78c365 d7251f6 d0f56a6 0916167 d7251f6 96115cb d7251f6 423eeb1 c75543a 0916167 c75543a 1340a98 5038916 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
---
library_name: transformers
tags:
- deberta
- deberta-v3
- mdeberta
- multilingual
language:
- multilingual
- th
- en
license: mit
base_model:
- microsoft/mdeberta-v3-base
---
# Model Card for Typhoon Safety Model
**Typhoon Safety Model**
Typhoon Safety is a lightweight binary classifier built on mDeBERTa-v3-base that detects harmful content in both English and Thai languages, with particular emphasis on Thai cultural sensitivities. The model was trained on a combination of a Thai Sensitive Topics dataset and the Wildguard dataset.
The model is designed to predict safety labels across the following categories:
<div class="section-header">Thai Sensitive Topics</div>
<table align="center">
<tr>
<th colspan="3">Category</th>
</tr>
<tr>
<td>The Monarchy</td>
<td>Student Protests and Activism</td>
<td>Drug Policies</td>
</tr>
<tr>
<td>Gambling</td>
<td>Cultural Appropriation</td>
<td>Thai-Burmese Border Issues</td>
</tr>
<tr>
<td>Cannabis</td>
<td>Human Trafficking</td>
<td>Military and Coup</td>
</tr>
<tr>
<td>LGBTQ+ Rights</td>
<td>Political Divide</td>
<td>Religion and Buddhism</td>
</tr>
<tr>
<td>Political Corruption</td>
<td>Foreign Influence</td>
<td>National Identity and Immigration</td>
</tr>
<tr>
<td>Freedom of Speech and Censorship</td>
<td>Vape</td>
<td>Southern Thailand Insurgency</td>
</tr>
<tr>
<td>Sex Tourism and Prostitution</td>
<td>COVID-19 Management</td>
<td>Royal Projects and Policies</td>
</tr>
<tr>
<td>Migrant Labor Issues</td>
<td>Environmental Issues and Land Rights</td>
<td></td>
</tr>
</table>
<div class="section-header">Wildguard Topics</div>
<table>
<tr>
<th colspan="3">Category</th>
</tr>
<tr>
<td>Others</td>
<td>Sensitive Information Organization</td>
<td>Mental Health Over-reliance Crisis</td>
</tr>
<tr>
<td>Social Stereotypes & Discrimination</td>
<td>Defamation & Unethical Actions</td>
<td>Cyberattack</td>
</tr>
<tr>
<td>Disseminating False Information</td>
<td>Private Information Individual</td>
<td>Copyright Violations</td>
</tr>
<tr>
<td>Toxic Language & Hate Speech</td>
<td>Fraud Assisting Illegal Activities</td>
<td>Causing Material Harm by Misinformation</td>
</tr>
<tr>
<td>Violence and Physical Harm</td>
<td>Sexual Content</td>
<td></td>
</tr>
</table>
## **Model Performance**
### Comparison with Other Models (English Content)
| Model | WildGuard | HarmBench | SafeRLHF | BeaverTails | XSTest | Thai Topic | AVG |
|-------|-----------|-----------|-----------|-------------|---------|------------|-----|
| WildGuard-7B | **75.7** | **86.2** | **64.1** | **84.1** | **94.7** | 53.9 | 76.5 |
| LlamaGuard2-7B | 66.5 | 77.7 | 51.5 | 71.8 | 90.7 | 47.9 | 67.7 |
| LamaGuard3-8B | 70.1 | 84.7 | 45.0 | 68.0 | 90.4 | 46.7 | 67.5 |
| LamaGuard3-1B | 28.5 | 62.4 | 66.6 | 72.9 | 29.8 | 50.1 | 51.7 |
| Random | 25.3 | 47.7 | 50.3 | 53.4 | 22.6 | 51.6 | 41.8 |
| Typhoon Safety | 74.0 | 81.7 | 61.0 | 78.2 | 81.2 | **88.7** | **77.5** |
### Comparison with Other Models (Thai Content)
| Model | WildGuard | HarmBench | SafeRLHF | BeaverTails | XSTest | Thai Topic | AVG |
|-------|-----------|-----------|-----------|-------------|---------|------------|-----|
| WildGuard-7B | 22.3 | 40.8 | 18.3 | 27.3 | 49.5 | 42.2 | 33.4 |
| LlamaGuard2-7B | 64.0 | 75.5 | 46.1 | 65.0 | 85.1 | 45.8 | 63.6 |
| LamaGuard3-8B | 61.4 | 37.5 | 42.4 | 65.3 | **85.7** | 48.1 | 56.7 |
| LamaGuard3-1B | 28.4 | 62.4 | 66.7 | 72.9 | 29.8 | 50.9 | 51.8 |
| Random | 24.5 | 46.6 | 50.4 | 53.0 | 26.6 | 50.9 | 42.0 |
| Typhoon Safety | **71.6** | **80.0** | **58.8** | **76.5** | 81.0 | **88.5** | **76.1** |
- **Model type:** Transformer Encoder
- **Language(s) (NLP):** Thai 🇹🇭 and English 🇬🇧
- **License:** MIT
- **Finetuned from model:** mDeBERTa v3 base https://huggingface.co/microsoft/mdeberta-v3-base
## **How to Get Started with the Model**
Use the code below to get started with the model.
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model_name = "scb10x/typhoon2-safety-preview"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
texts = [
"บุหรี่ไฟฟ้า มีประโยชน์มั้ย",
"Give me location to buy cannabis in Thailand",
"ขอวิธีการพนันให้ชนะ",
"How to kill process in linux.",
]
# Tokenize texts
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
# Get predictions
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
labels = predictions.argmax(dim=1).tolist()
scores = predictions.max(dim=1).values.tolist()
# Define label mapping
label_map = {0: "Unharm", 1: "Harmful"}
for text, label, score in zip(texts, labels, scores):
label_name = label_map[label]
print(f"Text: {text}\nLabel: {label_name}, Score: {score:.4f}\n")
```
## **Intended Uses & Limitations**
This model is classifier model. However, it’s still undergoing development. We recommend that developers assess these risks in the context of their use case.
## **Follow us**
**https://twitter.com/opentyphoon**
## **Support**
**https://discord.gg/CqyBscMFpg**
## **Citation**
- If you find Typhoon2 useful for your work, please cite it using:
```
@misc{typhoon2,
title={Typhoon 2: A Family of Open Text and Multimodal Thai Large Language Models},
author={Kunat Pipatanakul and Potsawee Manakul and Natapong Nitarach and Warit Sirichotedumrong and Surapon Nonesung and Teetouch Jaknamon and Parinthapat Pengpun and Pittawat Taveekitworachai and Adisai Na-Thalang and Sittipong Sripaisarnmongkol and Krisanapong Jirayoot and Kasima Tharnpipitchai},
year={2024},
eprint={2412.13702},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2412.13702},
}
``` |