--- library_name: diffusers --- a cute robot digital illustration, full pose Quick start: ```python from diffusers.models import AutoencoderKL from diffusers import StableDiffusionPipeline from diffusers.schedulers.scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from PIL import Image import torch DPM_SOLVER_MULTI_STEP_SCHEDULER_CONFIG = { "algorithm_type": "dpmsolver++", "beta_end": 0.012, "beta_schedule": "scaled_linear", "beta_start": 0.00085, "clip_sample": False, "dynamic_thresholding_ratio": 0.995, "euler_at_final": False, "final_sigmas_type": "zero", "lambda_min_clipped": float("-inf"), "lower_order_final": True, "num_train_timesteps": 1000, "prediction_type": "epsilon", "sample_max_value": 1.0, "set_alpha_to_one": False, "solver_order": 2, "solver_type": "midpoint", "steps_offset": 1, "thresholding": False, "timestep_spacing": "linspace", "trained_betas": None, "use_karras_sigmas": True, "use_lu_lambdas": False, "variance_type": None, } if __name__ == "__main__": width = 512 height = int((width * 1.25 // 8) * 8) vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse") pipe = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", use_safetensors=True, safety_checker=None, vae=vae ).to("cuda") pipe.scheduler = DPMSolverMultistepScheduler.from_config( DPM_SOLVER_MULTI_STEP_SCHEDULER_CONFIG, ) prompt = "a cute robot digital illustration, full pose" seed = 2544574284 images = [] scales = [-1, 0, 1, 1.5] for scale in scales: generator = torch.Generator(device="cpu").manual_seed(seed) pipe.load_lora_weights("scenario-labs/more_details", weight_name="more_details.safetensors") pipe.fuse_lora(lora_scale=scale) image = pipe( prompt, generator=generator, num_inference_steps=25, num_samples=1, width=width, height=height ).images[0] pipe.unfuse_lora() images.append(image) # Combine images into a single row combined_image = Image.new('RGB', (width * len(images), height)) x_offset = 0 for image in images: combined_image.paste(image, (x_offset, 0)) x_offset += width # Display the combined image combined_image.save("demo.png") ```