File size: 2,190 Bytes
7116ed0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
tags:
- generated_from_trainer
datasets:
- jnlpba
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: biobert-base-cased-v1.2-finetuned-ner
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: jnlpba
      type: jnlpba
      args: jnlpba
    metrics:
    - name: Precision
      type: precision
      value: 0.8948080842655547
    - name: Recall
      type: recall
      value: 0.9282417121275703
    - name: F1
      type: f1
      value: 0.9112183219652858
    - name: Accuracy
      type: accuracy
      value: 0.9601644367242017
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# biobert-base-cased-v1.2-finetuned-ner

This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the jnlpba dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1265
- Precision: 0.8948
- Recall: 0.9282
- F1: 0.9112
- Accuracy: 0.9602

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2278        | 1.0   | 1858 | 0.1826          | 0.8415    | 0.8815 | 0.8610 | 0.9384   |
| 0.151         | 2.0   | 3716 | 0.1443          | 0.8756    | 0.9162 | 0.8955 | 0.9530   |
| 0.1157        | 3.0   | 5574 | 0.1265          | 0.8948    | 0.9282 | 0.9112 | 0.9602   |


### Framework versions

- Transformers 4.12.0.dev0
- Pytorch 1.9.1+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3