--- tags: - generated_from_trainer datasets: - jnlpba metrics: - precision - recall - f1 - accuracy model-index: - name: biobert-base-cased-v1.2-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: jnlpba type: jnlpba args: jnlpba metrics: - name: Precision type: precision value: 0.7192068453790534 - name: Recall type: recall value: 0.8313138686131387 - name: F1 type: f1 value: 0.7712075299216197 - name: Accuracy type: accuracy value: 0.9063193640796039 --- # biobert-base-cased-v1.2-finetuned-ner This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the jnlpba dataset. It achieves the following results on the evaluation set: - Loss: 0.3149 - Precision: 0.7192 - Recall: 0.8313 - F1: 0.7712 - Accuracy: 0.9063 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2578 | 1.0 | 1160 | 0.2873 | 0.7118 | 0.8236 | 0.7636 | 0.9028 | | 0.1953 | 2.0 | 2320 | 0.3022 | 0.7149 | 0.825 | 0.7660 | 0.9048 | | 0.1572 | 3.0 | 3480 | 0.3149 | 0.7192 | 0.8313 | 0.7712 | 0.9063 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu102 - Datasets 1.13.2 - Tokenizers 0.10.3