--- tags: - generated_from_trainer datasets: - jnlpba metrics: - precision - recall - f1 - accuracy base_model: dmis-lab/biobert-base-cased-v1.2 model-index: - name: biobert-base-cased-v1.2-finetuned-ner results: - task: type: token-classification name: Token Classification dataset: name: jnlpba type: jnlpba args: jnlpba metrics: - type: precision value: 0.7150627220423177 name: Precision - type: recall value: 0.8300729927007299 name: Recall - type: f1 value: 0.7682875335686659 name: F1 - type: accuracy value: 0.90497239665345 name: Accuracy --- # biobert-base-cased-v1.2-finetuned-ner This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the jnlpba dataset. It achieves the following results on the evaluation set: - Loss: 0.3655 - Precision: 0.7151 - Recall: 0.8301 - F1: 0.7683 - Accuracy: 0.9050 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.257 | 1.0 | 1160 | 0.2889 | 0.7091 | 0.8222 | 0.7615 | 0.9021 | | 0.1962 | 2.0 | 2320 | 0.3009 | 0.7154 | 0.8259 | 0.7667 | 0.9048 | | 0.158 | 3.0 | 3480 | 0.3214 | 0.7098 | 0.8228 | 0.7621 | 0.9031 | | 0.131 | 4.0 | 4640 | 0.3385 | 0.7174 | 0.8292 | 0.7692 | 0.9055 | | 0.1081 | 5.0 | 5800 | 0.3655 | 0.7151 | 0.8301 | 0.7683 | 0.9050 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu102 - Datasets 1.13.2 - Tokenizers 0.10.3