|
--- |
|
library_name: sklearn |
|
tags: |
|
- sklearn |
|
- skops |
|
- tabular-regression |
|
model_file: pipeline.skops |
|
widget: |
|
structuredData: |
|
acceleration: |
|
- 20.7 |
|
- 17.0 |
|
- 18.6 |
|
cylinders: |
|
- 4 |
|
- 4 |
|
- 4 |
|
displacement: |
|
- 98.0 |
|
- 120.0 |
|
- 120.0 |
|
horsepower: |
|
- '65' |
|
- '88' |
|
- '79' |
|
model year: |
|
- 81 |
|
- 75 |
|
- 82 |
|
origin: |
|
- 1 |
|
- 2 |
|
- 1 |
|
weight: |
|
- 2380 |
|
- 2957 |
|
- 2625 |
|
--- |
|
|
|
# Model description |
|
|
|
This is a regression model on MPG dataset trained for this [kaggle tutorial](https://www.kaggle.com/unofficialmerve/persisting-your-scikit-learn-model-using-skops/). |
|
|
|
## Intended uses & limitations |
|
|
|
This model is not ready to be used in production. |
|
|
|
## Training Procedure |
|
|
|
### Hyperparameters |
|
|
|
The model is trained with below hyperparameters. |
|
|
|
<details> |
|
<summary> Click to expand </summary> |
|
|
|
| Hyperparameter | Value | |
|
|--------------------------|---------------| |
|
| ccp_alpha | 0.0 | |
|
| criterion | squared_error | |
|
| max_depth | | |
|
| max_features | | |
|
| max_leaf_nodes | | |
|
| min_impurity_decrease | 0.0 | |
|
| min_samples_leaf | 1 | |
|
| min_samples_split | 2 | |
|
| min_weight_fraction_leaf | 0.0 | |
|
| random_state | | |
|
| splitter | best | |
|
|
|
</details> |
|
|
|
### Model Plot |
|
|
|
The model plot is below. |
|
|
|
<style>#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 {color: black;background-color: white;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 pre{padding: 0;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-toggleable {background-color: white;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-estimator:hover {background-color: #d4ebff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-item {z-index: 1;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item:only-child::after {width: 0;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-text-repr-fallback {display: none;}</style><div id="sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>DecisionTreeRegressor()</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="37ade0f5-01f0-4181-acab-e7150c3b5fa2" type="checkbox" checked><label for="37ade0f5-01f0-4181-acab-e7150c3b5fa2" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeRegressor</label><div class="sk-toggleable__content"><pre>DecisionTreeRegressor()</pre></div></div></div></div></div> |
|
|
|
## Evaluation Results |
|
|
|
You can find the details about evaluation process and the evaluation results. |
|
|
|
|
|
|
|
| Metric | Value | |
|
|--------------------|---------------------------------------| |
|
| Mean Squared Error | 10.86399394359616 | |
|
| R-Squared | <function r2_score at 0x7f743fc54b00> | |
|
|
|
# How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
```python |
|
from skops.io import load |
|
import json |
|
import pandas as pd |
|
clf = load("pipeline.skops") |
|
with open("config.json") as f: |
|
config = json.load(f) |
|
clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"])) |
|
``` |
|
|
|
|
|
# Model Card Authors |
|
|
|
This model card is written by following authors: |
|
|
|
[More Information Needed] |
|
|
|
# Model Card Contact |
|
|
|
You can contact the model card authors through following channels: |
|
[More Information Needed] |
|
|
|
# Citation |
|
|
|
Below you can find information related to citation. |
|
|
|
**BibTeX:** |
|
``` |
|
[More Information Needed] |
|
``` |