---
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-regression
model_file: model.pkl
widget:
structuredData:
Fedu:
- 3
- 3
- 3
Fjob:
- other
- other
- services
G1:
- 12
- 13
- 8
G2:
- 13
- 14
- 7
G3:
- 12
- 14
- 0
Medu:
- 3
- 2
- 1
Mjob:
- services
- other
- at_home
Pstatus:
- T
- T
- T
Walc:
- 2
- 1
- 1
absences:
- 2
- 0
- 0
activities:
- 'yes'
- 'no'
- 'yes'
address:
- U
- U
- U
age:
- 16
- 16
- 16
failures:
- 0
- 0
- 3
famrel:
- 4
- 5
- 4
famsize:
- GT3
- GT3
- GT3
famsup:
- 'no'
- 'no'
- 'no'
freetime:
- 2
- 3
- 3
goout:
- 3
- 3
- 5
guardian:
- mother
- father
- mother
health:
- 3
- 3
- 3
higher:
- 'yes'
- 'yes'
- 'yes'
internet:
- 'yes'
- 'yes'
- 'yes'
nursery:
- 'yes'
- 'yes'
- 'no'
paid:
- 'yes'
- 'no'
- 'no'
reason:
- home
- home
- home
romantic:
- 'yes'
- 'no'
- 'yes'
school:
- GP
- GP
- GP
schoolsup:
- 'no'
- 'no'
- 'no'
sex:
- M
- M
- F
studytime:
- 2
- 1
- 2
traveltime:
- 1
- 2
- 1
---
# Model description
This is an XGBoost model trained to predict daily alcohol consumption of students.
## Intended uses & limitations
[More Information Needed]
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
Click to expand
| Hyperparameter | Value |
|---------------------------------------|------------------------------------------------------|
| memory | |
| steps | [('onehotencoder', OneHotEncoder(handle_unknown='ignore', sparse=False)), ('xgbregressor', XGBRegressor(base_score=None, booster=None, callbacks=None,
colsample_bylevel=None, colsample_bynode=None,
colsample_bytree=None, early_stopping_rounds=None,
enable_categorical=False, eval_metric=None, feature_types=None,
gamma=None, gpu_id=None, grow_policy=None, importance_type=None,
interaction_constraints=None, learning_rate=None, max_bin=None,
max_cat_threshold=None, max_cat_to_onehot=None,
max_delta_step=None, max_depth=5, max_leaves=None,
min_child_weight=None, missing=nan, monotone_constraints=None,
n_estimators=100, n_jobs=None, num_parallel_tree=None,
predictor=None, random_state=None, ...))] |
| verbose | False |
| onehotencoder | OneHotEncoder(handle_unknown='ignore', sparse=False) |
| xgbregressor | XGBRegressor(base_score=None, booster=None, callbacks=None,
colsample_bylevel=None, colsample_bynode=None,
colsample_bytree=None, early_stopping_rounds=None,
enable_categorical=False, eval_metric=None, feature_types=None,
gamma=None, gpu_id=None, grow_policy=None, importance_type=None,
interaction_constraints=None, learning_rate=None, max_bin=None,
max_cat_threshold=None, max_cat_to_onehot=None,
max_delta_step=None, max_depth=5, max_leaves=None,
min_child_weight=None, missing=nan, monotone_constraints=None,
n_estimators=100, n_jobs=None, num_parallel_tree=None,
predictor=None, random_state=None, ...) |
| onehotencoder__categories | auto |
| onehotencoder__drop | |
| onehotencoder__dtype |
Pipeline(steps=[('onehotencoder',OneHotEncoder(handle_unknown='ignore', sparse=False)),('xgbregressor',XGBRegressor(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None,feature_types=None, gamma=None, gpu_id=None,grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=5, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, n_estimators=100,n_jobs=None, num_parallel_tree=None,predictor=None, random_state=None, ...))])Please rerun this cell to show the HTML repr or trust the notebook.
Pipeline(steps=[('onehotencoder',OneHotEncoder(handle_unknown='ignore', sparse=False)),('xgbregressor',XGBRegressor(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None,feature_types=None, gamma=None, gpu_id=None,grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=5, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, n_estimators=100,n_jobs=None, num_parallel_tree=None,predictor=None, random_state=None, ...))])
OneHotEncoder(handle_unknown='ignore', sparse=False)
XGBRegressor(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None, feature_types=None,gamma=None, gpu_id=None, grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None, max_bin=None,max_cat_threshold=None, max_cat_to_onehot=None,max_delta_step=None, max_depth=5, max_leaves=None,min_child_weight=None, missing=nan, monotone_constraints=None,n_estimators=100, n_jobs=None, num_parallel_tree=None,predictor=None, random_state=None, ...)
Explained as: feature importances
XGBoost feature importances; values are numbers 0 <= x <= 1;all values sum to 1.
Weight | Feature |
---|---|
0.3592 | x26_5 |
0.0499 | x26_1 |
0.0383 | x26_4 |
0.0325 | x23_3 |
0.0256 | x28_0 |
0.0229 | x30_10 |
0.0222 | x8_health |
0.0203 | x29_10 |
0.0200 | x14_2 |
0.0200 | x7_3 |
0.0199 | x31_16 |
0.0179 | x28_8 |
0.0155 | x28_6 |
0.0155 | x11_mother |
0.0149 | x29_12 |
0.0145 | x26_2 |
0.0138 | x21_no |
0.0112 | x6_2 |
0.0098 | x14_0 |
0.0092 | x18_no |
… 161 more … |